Gaëtane Lespes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3234812/publications.pdf

Version: 2024-02-01

79	1 922	201674	315739
papers	1,833 citations	h-index	g-index
• •			
81	81	81	1650
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Fieldâ€flow fractionation for nanoparticle characterization. Journal of Separation Science, 2022, 45, 347-368.	2.5	13
2	Nucleoside-Derived Low-Molecular-Weight Gelators as a Synthetic Microenvironment for 3D Cell Culture. ACS Biomaterials Science and Engineering, 2022, 8, 3387-3398.	5.2	2
3	Sedimentation Field-flow Fractionation in Thin Channels and Rotating Coiled Columns: From Analytical to Preparative Scale Separations. Separation and Purification Reviews, 2021, 50, 363-379.	5.5	5
4	Self-Assembly of Nucleoside-Derived Low-Molecular-Weight Gelators: A Thermodynamics and Kinetics Study on Different Length Scales. Langmuir, 2021, 37, 297-310.	3.5	6
5	Characterization of volcanic ash nanoparticles and study of their fate in aqueous medium by asymmetric flow field-flow fractionation–multi-detection. Environmental Science and Pollution Research, 2021, 28, 31850-31860.	5.3	4
6	Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. Nanomaterials, 2021, 11, 481.	4.1	38
7	Centrifugal ultrafiltration preconcentration for studying the colloidal phase of a uranium-containing soil suspension. Journal of Chromatography A, 2021, 1640, 461957.	3.7	1
8	Platinum group elements contamination in soils: Review of the current state. Chemosphere, 2021, 271, 129517.	8.2	32
9	Spatial distribution of trace elements in the soils of south-western France and identification of natural and anthropogenic sources. Catena, 2021, 205, 105446.	5.0	8
10	Comparison of preconcentration methods of the colloidal phase of a uranium-containing soil suspension. Talanta, 2020, 208, 120383.	5 . 5	7
11	Natural Nanoparticles, Anthropogenic Nanoparticles, Where Is the Frontier?. Frontiers in Environmental Science, 2020, 8, .	3.3	49
12	Chelating Performance Evaluation of Ion Exchange Resin Chelex-100. Journal of Analytical Chemistry, 2020, 75, 468-473.	0.9	2
13	Colloidal mobilization from soil and transport of uranium in (sub)-surface waters. Environmental Science and Pollution Research, 2019, 26, 5294-5304.	5.3	16
14	Spatial Variation in the Molecular Composition of Dissolved Organic Matter from the Podzol Soils of a Temperate Pine Forest. ACS Earth and Space Chemistry, 2019, 3, 1685-1696.	2.7	10
15	Reliability of the direct ICP-MS analysis of volcanic ash nanoparticles. International Journal of Environmental Analytical Chemistry, 2019, 99, 369-379.	3.3	3
16	Nanoanalytics: analytical methods for characterization of nano- and micro-objects. Environmental Science and Pollution Research, 2019, 26, 5235-5237.	5.3	6
17	Separation of nanoparticles from polydisperse environmental samples: comparative study of filtration, sedimentation, and coiled tube field-flow fractionation. Analytical and Bioanalytical Chemistry, 2019, 411, 8011-8021.	3.7	12
18	Nanoanalytics: history, concepts, and specificities. Environmental Science and Pollution Research, 2019, 26, 5267-5281.	5.3	18

#	Article	IF	Citations
19	Characterization of polymer-coated CdSe/ZnS quantum dots and investigation of their behaviour in soil solution at relevant concentration by asymmetric flow field-flow fractionation – multi angle light scattering – inductively coupled plasma - mass spectrometry. Analytica Chimica Acta, 2018, 1028, 104-112.	5.4	19
20	Gold and silver quantification from gold-silver nanoshells in HaCaT cells. Journal of Trace Elements in Medicine and Biology, 2018, 47, 70-78.	3.0	1
21	Diffusive Milli-Gels (DMG) for in situ assessment of metal bioavailability: A comparison with labile metal measurement using Chelex columns and acute toxicity to Ceriodaphnia dubia for copper in freshwaters. Chemosphere, 2016, 164, 7-13.	8.2	8
22	Design and Cellular Fate of Bioinspired Au–Ag Nanoshells@Hybrid Silica Nanoparticles. Langmuir, 2016, 32, 10073-10082.	3.5	21
23	Need for revisiting the terminology about speciation. Environmental Science and Pollution Research, 2016, 23, 15767-15770.	5.3	4
24	The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs. Water Research, 2016, 94, 315-327.	11.3	32
25	Quantification of titanium from TiO2 particles in biological tissue. Journal of Trace Elements in Medicine and Biology, 2015, 32, 40-44.	3.0	8
26	Field and flow-based separations. Analytical and Bioanalytical Chemistry, 2015, 407, 4299-4300.	3.7	0
27	Adsorption and degradation processes of tributyltin and trimethyltin in landfill leachates treated with iron nanoparticles. Environmental Research, 2015, 142, 511-521.	7.5	10
28	Asymmetric flow-field flow fractionation-multidetection coupling for assessing colloidal copper in drain waters from a Bordeaux wine-growing area. Analytical and Bioanalytical Chemistry, 2014, 406, 1111-1119.	3.7	4
29	Optimization of flow field-flow fractionation for the characterization of natural colloids. Analytical and Bioanalytical Chemistry, 2014, 406, 1639-1649.	3.7	11
30	Determination of total and electrolabile copper in agricultural soil by using disposable modified-carbon screen-printed electrodes. Analytical and Bioanalytical Chemistry, 2014, 406, 1249-1252.	3.7	4
31	Speciation analysis of organotin compounds in human urine by headspace solid-phase micro-extraction and gas chromatography with pulsed flame photometric detection. Talanta, 2014, 125, 196-203.	5.5	17
32	Speciation of copper in agricultural soils contaminated by lead using screen-printed electrodes and square-wave anodic stripping voltammetry (SPE-SWASV). Analytical Methods, 2014, 6, 7942-7950.	2.7	0
33	Isotopic investigation of the colloidal mobility of depleted uranium in a podzolic soil. Chemosphere, 2014, 103, 343-348.	8.2	13
34	Asymmetrical flow field-flow fractionation analysis of water suspensions of polymer nanofibers synthesized via RAFT-mediated emulsion polymerization. Analytica Chimica Acta, 2014, 819, 116-121.	5.4	8
35	Assessment of diffuse contamination of agricultural soil by copper in Aquitaine region by using French national databases. Science of the Total Environment, 2012, 441, 239-247.	8.0	21
36	A new analytical approach based on asymmetrical flow field-flow fractionation coupled to ultraviolet spectrometry and light scattering detection for SWCNT aqueous dispersion studies. Analyst, The, 2012, 137, 917-923.	3.5	12

#	Article	IF	CITATIONS
37	Size characterization of the associations between carbon nanotubes and humic acids in aqueous media by asymmetrical flow field-flow fractionation combined with multi-angle light scattering. Chemosphere, 2012, 86, 177-182.	8.2	18
38	Nanoparticle Characterization by Cyclical Electrical Field-Flow Fractionation. Analytical Chemistry, 2011, 83, 6565-6572.	6.5	32
39	Investigation of uranium–colloid interactions in soil by dual field-flow fractionation/capillary electrophoresis hyphenated with inductively coupled plasma-mass spectrometry. Talanta, 2011, 85, 2504-2510.	5.5	27
40	Accurate determination of the length of carbon nanotubes using multi-angle light scattering. Mikrochimica Acta, 2011, 175, 265-271.	5.0	12
41	Multi-wall carbon nanotube aqueous dispersion monitoring by using A4F-UV-MALS. Analytical and Bioanalytical Chemistry, 2011, 401, 3345-3353.	3.7	16
42	Hyphenated analytical techniques for multidimensional characterisation of submicron particles: A review. Analytica Chimica Acta, 2011, 692, 26-41.	5.4	80
43	Assessment of metal - extracellular polymeric substances interactions by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry. Environmental Chemistry, 2010, 7, 215.	1.5	19
44	Single walled carbon nanotube length determination by asymmetrical-flow field-flow fractionation hyphenated to multi-angle laser-light scattering. Journal of Chromatography A, 2010, 1217, 7891-7897.	3.7	33
45	Development of the extraction method for the simultaneous determination of butyl-, phenyl- and octyltin compounds in sewage sludge. Talanta, 2010, 80, 1945-1951.	5.5	23
46	Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution. Water Research, 2010, 44, 340-350.	11.3	71
47	Assessment of Total Aromatic Hydrocarbons, Aliphatic and Polycyclic Aromatic Hydrocarbons in Surface Sediment and Fish from the Gulf of Tunis (Tunisia). Soil and Sediment Contamination, 2010, 19, 467-486.	1.9	9
48	STUDY OF RUGGEDNESS HS-SPME PROCEDURE FOR ORGANOTIN ANALYSIS BY GC-PFPD. Journal of the Chilean Chemical Society, 2009, 54, .	1.2	1
49	Tributyltin and triphenyltin uptake by lettuce. Journal of Environmental Management, 2009, 90, S60-S68.	7.8	19
50	Colloidal transport of uranium in soil: Size fractionation and characterization by field-flow fractionation–multi-detection. Journal of Chromatography A, 2009, 1216, 9113-9119.	3.7	42
51	Evaluation of a combined fractionation and speciation approach for study of size-based distribution of organotin species on environmental colloids. Analytical and Bioanalytical Chemistry, 2008, 390, 1805-1813.	3.7	17
52	Organotin speciation in French brandies and wines by solid-phase microextraction and gas chromatography—Pulsed flame photometric detection. Journal of Chromatography A, 2008, 1180, 122-130.	3.7	27
53	Comprehensive study of the parameters influencing the detection of organotin compounds by a pulsed flame photometric detector in sewage sludge. Journal of Chromatography A, 2008, 1188, 281-285.	3.7	15
54	Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation. Journal of Chromatography A, 2008, 1206, 160-165.	3.7	89

#	Article	IF	CITATIONS
55	Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters: An approach using frontal ultrafiltration (UF) and stripping chronopotentiometric methods (SCP). Estuarine, Coastal and Shelf Science, 2008, 80, 538-544.	2.1	63
56	Analytical advances in butyl-, phenyl- and octyltin speciation analysis in soil by GC-PFPD. Talanta, 2008, 75, 486-493.	5 . 5	32
57	Kinetic degradation processes of butyl- and phenyltins in soils. Chemosphere, 2008, 72, 940-946.	8.2	28
58	Optimisation of ICPMS collision/reaction cell conditions for the simultaneous removal of argon based interferences of arsenic and selenium in water samples. Talanta, 2007, 71, 2080-2084.	5 . 5	42
59	Determination of organotins in aquatic plants by headspace SPME followed by GC-PFPD determination. International Journal of Environmental Analytical Chemistry, 2006, 86, 733-742.	3 . 3	3
60	TBT and TPhT persistence in a sludged soil. Chemosphere, 2006, 65, 2322-2332.	8.2	33
61	Influence of the soil matrices on the analytical performance of headspace solid-phase microextraction for organotin analysis by gas chromatography-pulsed flame photometric detection. Journal of Chromatography A, 2006, 1132, 234-240.	3.7	24
62	Organotin speciation in Bizerte lagoon (Tunisia). Science of the Total Environment, 2005, 349, 211-222.	8.0	52
63	Determination of organotin compounds by headspace solid-phase microextraction–gas chromatography–pulsed flame-photometric detection (HS-SPME–GC–PFPD). Analytical and Bioanalytical Chemistry, 2005, 383, 1082-1089.	3.7	38
64	Pressurised solvent extraction for organotin speciation in vegetable matrices. Analytical and Bioanalytical Chemistry, 2005, 382, 1574-1583.	3.7	27
65	Operational optimisation of ICP—octopole collision/reaction cell—MS for applications to ultratrace selenium total and speciation determination. Journal of Analytical Atomic Spectrometry, 2005, 20, 88-94.	3.0	38
66	Identification of sulfur interferences during organotin determination in harbour sediment samples by sodium tetraethyl borate ethylation and gas chromatography-pulsed flame photometric detection. Journal of Chromatography A, 2004, 1046, 217-224.	3.7	24
67	Identification of sulfur interferences during organotin determination in harbour sediment samples by sodium tetraethyl borate ethylation and gas chromatography-pulsed flame photometric detection. Journal of Chromatography A, 2004, 1046, 217-224.	3.7	10
68	Validation, using a chemometric approach, of gas chromatography–inductively coupled plasma–atomic emission spectrometry (GC–ICP–AES) for organotin determination. Analytical and Bioanalytical Chemistry, 2003, 376, 226-235.	3.7	19
69	Rapid determination of organotin compounds by headspace solid-phase microextraction. Journal of Chromatography A, 2003, 999, 123-134.	3.7	70
70	Physico-chemical approach to study organotin sorption–desorption during solid-phase microextraction. Journal of Chromatography A, 2003, 999, 61-70.	3.7	16
71	Extraction procedure for organotin analysis in plant matrices: optimisation and application. Talanta, 2002, 57, 31-43.	5.5	28
72	Speciation of organotins in environmental samples by SPME-GC: comparison of four specific detectors: FPD, PFPD, MIP-AES and ICP-MS. Journal of Analytical Atomic Spectrometry, 2001, 16, 263-269.	3.0	95

#	Article	IF	CITATIONS
73	Optimisation of the storage of natural freshwaters before organotin speciation. Water Research, 2001, 35, 224-232.	11.3	29
74	Optimisation of the hyphenation between solid-phase microextraction, capillary gas chromatography and inductively coupled plasma atomic emission spectrometry for the routine speciation of organotin compounds in the environment. Journal of Analytical Atomic Spectrometry, 2001, 16, 1429-1433.	3.0	41
75	Solid phase microextraction (SPME): a new procedure for the control of butyl- and phenyltin pollution in the environment by GC-FPD. Analyst, The, 2000, 125, 263-268.	3.5	66
76	Optimisation using experimental designs of the sample pretreatment: application to the control of the organotins in sewage sludge by GC-FPD. Analyst, The, 1999, 124, 1265-1270.	3.5	24
77	Direct determination of butyl-and phenyltin compounds as chlorides using gas chromatography and flame photometric detection. Analyst, The, 1996, 121, 1969.	3.5	19
78	Theoretical and experimental study of the vacuum ultraviolet spectrum of tetrasubstituted tin derivatives SnCl4 and Sn(CH3)4. Chemical Physics, 1987, 111, 97-103.	1.9	18
79	The vacuum ultraviolet spectrum of stannane. Chemical Physics, 1986, 103, 85-91.	1.9	9