Jin-Gui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3234575/publications.pdf

Version: 2024-02-01

133	10,272	54	96
papers	citations	h-index	g-index
138	138	138	8943 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Economic impact of yield and composition variation in bioenergy crops: <scp><i>Populus trichocarpa</i></scp> . Biofuels, Bioproducts and Biorefining, 2021, 15, 176-188.	3.7	13
2	Cover Image, Volume 15, Issue 1. Biofuels, Bioproducts and Biorefining, 2021, 15, i.	3.7	0
3	Overexpression of an Agave Phosphoenolpyruvate Carboxylase Improves Plant Growth and Stress Tolerance. Cells, 2021, 10, 582.	4.1	24
4	Metabolomic Patterns of Septoria Canker Resistant and Susceptible <i>Populus trichocarpa</i> Genotypes 24 Hours Postinoculation. Phytopathology, 2021, 111, 2052-2066.	2.2	6
5	Identification, Expression, and Interaction Analysis of Ovate Family Proteins in Populus trichocarpa Reveals a Role of PtOFP1 Regulating Drought Stress Response. Frontiers in Plant Science, 2021, 12, 650109.	3.6	1
6	Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. Horticulture Research, 2021, 8, 130.	6.3	20
7	Recent Advances in the Roles of HSFs and HSPs in Heat Stress Response in Woody Plants. Frontiers in Plant Science, 2021, 12, 704905.	3.6	29
8	Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 2021, 26, 1133-1152.	8.8	76
9	Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Frontiers in Plant Science, 2021, 12, 704697.	3.6	49
10	Towards engineering ectomycorrhization into switchgrass bioenergy crops via a lectin receptorâ€like kinase. Plant Biotechnology Journal, 2021, 19, 2454-2468.	8.3	14
11	The Ancient Salicoid Genome Duplication Event: A Platform for Reconstruction of De Novo Gene Evolution in Populus trichocarpa. Genome Biology and Evolution, 2021, 13, .	2.5	9
12	Expanding the application of a UV-visible reporter for transient gene expression and stable transformation in plants. Horticulture Research, 2021, 8, 234.	6.3	18
13	Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal. Biodesign Research, 2021, 2021, .	1.9	5
14	Plant-Based Biosensors for Detecting CRISPR-Mediated Genome Engineering. ACS Synthetic Biology, 2021, 10, 3600-3603.	3.8	7
15	Overexpression of a <i>Prefoldin \hat{l}^2</i> subunit gene reduces biomass recalcitrance in the bioenergy crop <i>Populus</i> . Plant Biotechnology Journal, 2020, 18, 859-871.	8.3	17
16	Identification of functional single nucleotide polymorphism of Populus trichocarpa PtrEPSPâ€₹F and determination of its transcriptional effect. Plant Direct, 2020, 4, e00178.	1.9	4
17	Arabidopsis Câ€terminal binding protein ANGUSTIFOLIA modulates transcriptional coâ€regulation of <i>MYB46</i> and <i>WRKY33</i> New Phytologist, 2020, 228, 1627-1639.	7.3	17
18	Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. Frontiers in Plant Science, 2020, 11, 596301.	3.6	61

#	Article	IF	Citations
19	Transcriptional and Post-transcriptional Regulation of Lignin Biosynthesis Pathway Genes in Populus. Frontiers in Plant Science, 2020, $11,652$.	3.6	34
20	Host plant genetic control of associated fungal and insect species in a <i>Populus</i> hybrid cross. Ecology and Evolution, 2020, 10, 5119-5134.	1.9	4
21	Light-responsive expression atlas reveals the effects of light quality and intensity in Kalancho $ ilde{A}$ « fedtschenkoi, a plant with crassulacean acid metabolism. GigaScience, 2020, 9, .	6.4	11
22	Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. Frontiers in Plant Science, 2020, 11, 572137.	3.6	43
23	Biosystems Design to Accelerate C ₃ -to-CAM Progression. Biodesign Research, 2020, 2020, .	1.9	16
24	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	1.9	16
25	Reconfiguring Plant Metabolism for Biodegradable Plastic Production. Biodesign Research, 2020, 2020, .	1.9	7
26	Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research. Biodesign Research, 2020, 2020, .	1.9	34
27	Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase. Nature Plants, 2019, 5, 676-680.	9.3	42
28	Finding New Cell Wall Regulatory Genes in Populus trichocarpa Using Multiple Lines of Evidence. Frontiers in Plant Science, 2019, 10, 1249.	3.6	13
29	Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop <i>Populus</i> Sustainable Energy and Fuels, 2019, 3, 195-207.	4.9	27
30	Multitrait genomeâ€wide association analysis of <i>Populus trichocarpa</i> identifies key polymorphisms controlling morphological and physiological traits. New Phytologist, 2019, 223, 293-309.	7.3	85
31	PdWND3A, a wood-associated NAC domain-containing protein, affects lignin biosynthesis and composition in Populus. BMC Plant Biology, 2019, 19, 486.	3.6	28
32	The grapevine kinome: annotation, classification and expression patterns in developmental processes and stress responses. Horticulture Research, 2018, 5, 19.	6.3	30
33	The Sphagnome Project: enabling ecological and evolutionary insights through a genusâ€level sequencing project. New Phytologist, 2018, 217, 16-25.	7.3	54
34	Recent Advances in the Transcriptional Regulation of Secondary Cell Wall Biosynthesis in the Woody Plants. Frontiers in Plant Science, 2018, 9, 1535.	3.6	110
35	Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant–pathogen interactions in a tree. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11573-11578.	7.1	61
36	Defining the genetic components of callus formation: A GWAS approach. PLoS ONE, 2018, 13, e0202519.	2.5	27

#	Article	IF	CITATIONS
37	Regulation of Lignin Biosynthesis and Its Role in Growth-Defense Tradeoffs. Frontiers in Plant Science, 2018, 9, 1427.	3.6	231
38	A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a <i>Populus</i> ANGUSTIFOLIA Protein. G3: Genes, Genomes, Genetics, 2018, 8, 2631-2641.	1.8	9
39	<scp>Genomeâ€wide association studies</scp> and expressionâ€based quantitative trait loci analyses reveal roles of <scp>HCT</scp> 2 in caffeoylquinic acid biosynthesis and its regulation by defenseâ€responsive transcription factors in <i>Populus</i> . New Phytologist, 2018, 220, 502-516.	7.3	112
40	A 5-Enolpyruvylshikimate 3-Phosphate Synthase Functions as a Transcriptional Repressor in <i>Populus</i>). Plant Cell, 2018, 30, 1645-1660.	6.6	56
41	Overexpression of a Domain of Unknown Function 266-containing protein results in high cellulose content, reduced recalcitrance, and enhanced plant growth in the bioenergy crop Populus. Biotechnology for Biofuels, 2017, 10, 74.	6.2	22
42	Insights of biomass recalcitrance in natural <i>Populus trichocarpa</i> variants for biomass conversion. Green Chemistry, 2017, 19, 5467-5478.	9.0	82
43	The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 2017, 8, 1899.	12.8	159
44	NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes <i>TRY</i> and <i>TCL1</i> . Plant Physiology, 2017, 174, 2363-2375.	4.8	56
45	Overexpression of a Domain of Unknown Function 231-containing protein increases O-xylan acetylation and cellulose biosynthesis in Populus. Biotechnology for Biofuels, 2017, 10, 311.	6.2	26
46	Involvement of PACLOBUTRAZOL RESISTANCE6/KIDARI, an Atypical bHLH Transcription Factor, in Auxin Responses in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1813.	3 . 6	36
47	Agronomic performance of Populus deltoides trees engineered for biofuel production. Biotechnology for Biofuels, 2017, 10, 253.	6.2	22
48	Characterization of DWARF14 Genes in Populus. Scientific Reports, 2016, 6, 21593.	3.3	26
49	Knockdown of a laccase in <i>Populus deltoides</i> confers altered cell wall chemistry and increased sugar release. Plant Biotechnology Journal, 2016, 14, 2010-2020.	8.3	64
50	Genome-wide analysis of lectin receptor-like kinases in Populus. BMC Genomics, 2016, 17, 699.	2.8	72
51	Simultaneous knockdown of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana. Plant Methods, 2016, 12, 16.	4.3	12
52	Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis. Journal of Plant Biology, 2016, 59, 16-23.	2.1	9
53	Ovate family protein1 interaction with BLH3 regulates transition timing from vegetative to reproductive phase in Arabidopsis. Biochemical and Biophysical Research Communications, 2016, 470, 492-497.	2.1	31
54	Characterization of an activationâ€ŧagged mutant uncovers a role of <scp>GLABRA</scp> 2 in anthocyanin biosynthesis in Arabidopsis. Plant Journal, 2015, 83, 300-311.	5.7	81

#	Article	IF	CITATIONS
55	The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis. Frontiers in Plant Science, 2015, 6, 1064.	3.6	45
56	Arabidopsis Receptor of Activated C Kinase1 Phosphorylation by WITH NO LYSINE8 KINASE. Plant Physiology, 2015, 167, 507-516.	4.8	38
57	High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics, 2015, 16, 24.	2.8	106
58	Phosphorylation of RACK1 in plants. Plant Signaling and Behavior, 2015, 10, e1022013.	2.4	17
59	Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis. Frontiers in Plant Science, 2014, 5, 133.	3.6	102
60	Functional Genomics of Drought Tolerance in Bioenergy Crops. Critical Reviews in Plant Sciences, 2014, 33, 205-224.	5.7	25
61	Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in <i>Arabidopsis</i> . Journal of Proteome Research, 2014, 13, 1359-1372.	3.7	24
62	Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nature Genetics, 2014, 46, 1089-1096.	21.4	330
63	Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis. Scientific Reports, 2014, 4, 5054.	3.3	106
64	OsRACK1 Is Involved in Abscisic Acid- and H2O2-Mediated Signaling to Regulate Seed Germination in Rice (Oryza sativa, L.). PLoS ONE, 2014, 9, e97120.	2.5	47
65	Characterization of MORE AXILLARY GROWTH Genes in Populus. PLoS ONE, 2014, 9, e102757.	2.5	23
66	R2R3 MYB transcription factor PtrMYB192 regulates flowering time in Arabidopsis by activating FLOWERING LOCUS C. Journal of Plant Biology, 2013, 56, 243-250.	2.1	27
67	A Dual Role of Strigolactones in Phosphate Acquisition and Utilization in Plants. International Journal of Molecular Sciences, 2013, 14, 7681-7701.	4.1	117
68	Heterotrimeric G protein signalling in the plant kingdom. Open Biology, 2013, 3, 120186.	3.6	218
69	Analysis of Cell Division and Cell Elongation in the Hypocotyls of Arabidopsis Heterotrimeric G Protein Mutants. Methods in Molecular Biology, 2013, 1043, 37-43.	0.9	1
70	Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling. Frontiers in Plant Science, 2012, 3, 236.	3.6	41
71	Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling. Plant Signaling and Behavior, 2012, 7, 1407-1410.	2.4	16
72	<i>Pseudomonas fluorescens</i> Induces Strain-Dependent and Strain-Independent Host Plant Responses in Defense Networks, Primary Metabolism, Photosynthesis, and Fitness. Molecular Plant-Microbe Interactions, 2012, 25, 765-778.	2.6	100

#	Article	IF	Citations
73	Highly Efficient Isolation of Populus Mesophyll Protoplasts and Its Application in Transient Expression Assays. PLoS ONE, 2012, 7, e44908.	2.5	89
74	Arabidopsis Gâ€protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Molecular Systems Biology, 2011, 7, 532.	7.2	191
75	OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in <i>Arabidopsis thaliana </i> . Plant Journal, 2011, 67, 328-341.	5.7	151
76	AtMPK4 is required for maleâ€specific meiotic cytokinesis in Arabidopsis. Plant Journal, 2011, 67, 895-906.	5.7	103
77	Abscisic Acid Receptors: Past, Present and Future (sup) F (sup). Journal of Integrative Plant Biology, 2011, 53, 469-479.	8.5	82
78	Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis. BMC Plant Biology, 2011, 11, 176.	3.6	111
79	Involvement of Arabidopsis RACK1 in Protein Translation and Its Regulation by Abscisic Acid Â. Plant Physiology, 2011, 155, 370-383.	4.8	111
80	Eukaryotic initiation factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation. Plant Signaling and Behavior, 2011, 6, 766-771.	2.4	14
81	Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development. PLoS ONE, 2011, 6, e23896.	2.5	104
82	Distinct relationships between GLABRA2 and singleâ€repeat R3 MYB transcription factors in the regulation of trichome and root hair patterning in Arabidopsis. New Phytologist, 2010, 185, 387-400.	7.3	52
83	Cell Surface- and Rho GTPase-Based Auxin Signaling Controls Cellular Interdigitation in Arabidopsis. Cell, 2010, 143, 99-110.	28.9	454
84	Heterotrimeric G-Proteins and Cell Division in Plants. Signaling and Communication in Plants, 2010, , 155-176.	0.7	2
85	Dissection of the Relationship Between RACK1 and Heterotrimeric G-Proteins in Arabidopsis. Plant and Cell Physiology, 2009, 50, 1681-1694.	3.1	23
86	Negative Regulation of Systemic Acquired Resistance by Replication Factor C Subunit3 in Arabidopsis. Plant Physiology, 2009, 150, 2009-2017.	4.8	35
87	RACK1 is a negative regulator of ABA responses in Arabidopsis. Journal of Experimental Botany, 2009, 60, 3819-3833.	4.8	100
88	Arabidopsis mitogenâ€activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant Journal, 2009, 57, 975-985.	5.7	128
89	Pores in Place. Science, 2009, 323, 592-593.	12.6	6
90	RACK1 genes regulate plant development with unequal genetic redundancy in Arabidopsis. BMC Plant Biology, 2008, 8, 108.	3.6	74

#	Article	IF	CITATIONS
91	Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis. BMC Plant Biology, 2008, 8, 81.	3.6	119
92	Loss-of-Function Mutations in the Arabidopsis Heterotrimeric G-protein α Subunit Enhance the Developmental Defects of Brassinosteroid Signaling and Biosynthesis Mutants. Plant and Cell Physiology, 2008, 49, 1013-1024.	3.1	53
93	GCR2 is a new member of the eukaryotic lanthionine synthetase component C-like protein family. Plant Signaling and Behavior, 2008, 3, 307-310.	2.4	15
94	Heterotrimeric G-protein signaling in Arabidopsis. Plant Signaling and Behavior, 2008, 3, 1042-1045.	2.4	9
95	Abscisic acid regulation of guard-cell K $<$ sup $>+<$ /sup $>$ and anion channels in $G\hat{I}^2$ - and RGS-deficient $<$ i $>$ Arabidopsis $<$ /i $>$ lines. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8476-8481.	7.1	107
96	Arabidopsis Transient Expression Analysis Reveals that Activation of GLABRA2 May Require Concurrent Binding of GLABRA1 and GLABRA3 to the Promoter of GLABRA2. Plant and Cell Physiology, 2008, 49, 1792-1804.	3.1	68
97	The GCR2 Gene Family Is Not Required for ABA Control of Seed Germination and Early Seedling Development in Arabidopsis. PLoS ONE, 2008, 3, e2982.	2.5	55
98	Heterotrimeric G-proteins in plant development. Frontiers in Bioscience - Landmark, 2008, Volume, 3321.	3.0	38
99	GTPase acceleration as the rate-limiting step in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17317-17322.	7.1	195
100	TRICHOMELESS1 regulates trichome patterning by suppressing <i>GLABRA1 </i> in <i>Arabidopsis </i> Development (Cambridge), 2007, 134, 3873-3882.	2.5	158
101	Sweet Sensor, Surprising Partners. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe7-pe7.	3.9	12
102	Comment on "A G Proteinâ€"Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid". Science, 2007, 318, 914-914.	12.6	85
103	Heterotrimeric G Protein Î ³ Subunits Provide Functional Selectivity in GÎ ² Î ³ Dimer Signaling in Arabidopsis. Plant Cell, 2007, 19, 1235-1250.	6.6	176
104	Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. Plant Journal, 2007, 50, 858-872.	5.7	209
105	Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant Journal, 2007, 52, 1001-1013.	5.7	111
106	Expression analysis of the AtMLO Gene Family Encoding Plant-Specific Seven-Transmembrane Domain Proteins. Plant Molecular Biology, 2006, 60, 583-597.	3.9	91
107	Altered Expression of Auxin-binding Protein 1 Affects Cell Expansion and Auxin Pool Size in Tobacco Cells. Journal of Plant Growth Regulation, 2006, 25, 69-78.	5.1	11
108	G-Protein Complex Mutants Are Hypersensitive to Abscisic Acid Regulation of Germination and Postgermination Development. Plant Physiology, 2006, 141, 243-256.	4.8	219

#	Article	IF	Citations
109	The Plastid Protein THYLAKOID FORMATION1 and the Plasma Membrane G-Protein GPA1 Interact in a Novel Sugar-Signaling Mechanism in Arabidopsis. Plant Cell, 2006, 18, 1226-1238.	6.6	187
110	Differential Roles of Arabidopsis Heterotrimeric G-Protein Subunits in Modulating Cell Division in Roots. Plant Physiology, 2006, 141, 887-897.	4.8	165
111	RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. Journal of Experimental Botany, 2006, 57, 2697-2708.	4.8	128
112	Different Signaling and Cell Death Roles of Heterotrimeric G Protein \hat{l}_{\pm} and \hat{l}_{\pm}^{2} Subunits in the Arabidopsis Oxidative Stress Response to Ozone. Plant Cell, 2005, 17, 957-970.	6.6	363
113	GCR1 Can Act Independently of Heterotrimeric G-Protein in Response to Brassinosteroids and Gibberellins in Arabidopsis Seed Germination. Plant Physiology, 2004, 135, 907-915.	4.8	160
114	AtRGS1 Function in Arabidopsis thaliana. Methods in Enzymology, 2004, 389, 338-350.	1.0	122
115	Dual Pathways for Auxin Regulation of Cell Division and Expansion. Biotechnology in Agriculture and Forestry, 2004, , 181-191.	0.2	1
116	A Seven-Transmembrane RGS Protein That Modulates Plant Cell Proliferation. Science, 2003, 301, 1728-1731.	12.6	300
117	The \hat{l}^2 -Subunit of the Arabidopsis G Protein Negatively Regulates Auxin-Induced Cell Division and Affects Multiple Developmental Processes[W]. Plant Cell, 2003, 15, 393-409.	6.6	310
118	A Reevaluation of the Role of the Heterotrimeric G Protein in Coupling Light Responses in Arabidopsis. Plant Physiology, 2003, 131, 1623-1627.	4.8	124
119	Role of a Heterotrimeric G Protein in Regulation of Arabidopsis Seed Germination. Plant Physiology, 2002, 129, 897-907.	4.8	227
120	The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant Journal, 2002, 28, 607-617.	5.7	112
121	Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO Journal, 2002, 21, 2877-2885.	7.8	138
122	Dual Auxin Signaling Pathways Control Cell Elongation and Division. Journal of Plant Growth Regulation, 2001, 20, 255-264.	5.1	48
123	ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes and Development, 2001, 15, 902-911.	5.9	295
124	Modulation of Cell Proliferation by Heterotrimeric G Protein in Arabidopsis. Science, 2001, 292, 2066-2069.	12.6	356
125	Crystallization and preliminary X-ray analysis of the auxin receptor ABP1. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1476-1478.	2.5	13
126	Gibberellin-responding and non-responding dwarf mutants in foxtail millet. Plant Growth Regulation, 1998, 26, 19-24.	3.4	11

#	Article	IF	CITATIONS
127	Involvement of Abscisic Acid in Mesocotyl Growth in Etiolated Seedlings of a Foxtail Millet Dwarf Mutant. Journal of Plant Growth Regulation, 1998, 17, 147-151.	5.1	1
128	Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat. Journal of Plant Nutrition, 1998, 21, 87-97.	1.9	54
129	Fluctuation in levels of endogenous hormones after decapitation and 6-benzyl amino purine treatment in azalea, and their relationship to apical dominance. Scientia Horticulturae, 1997, 71, 49-58.	3.6	12
130	Levels of Cytokinins in the Ovules of Cotton Mutants with Altered Fiber Development. Journal of Plant Growth Regulation, 1997, 16, 181-185.	5.1	35
131	Fluctuation in levels of endogenous plant hormones in ovules of normal and mutant cotton during flowering and their relation to fiber development. Journal of Plant Growth Regulation, 1996, 15, 173-177.	5.1	41
132	Heterotrimeric G-Protein-Coupled Signaling in Higher Plants., 0,, 30-63.		0
133	Innovative Biological Solutions to Challenges in Sustainable Biofuels Production. , 0, , .		1