Brian Pattengale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3233103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2018, 140, 14614-14618.	13.7	461
2	Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nature Communications, 2019, 10, 982.	12.8	311
3	Mixed-Node Metal–Organic Frameworks as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2520-2526.	17.4	252
4	Donor–Acceptor Fluorophores for Energy-Transfer-Mediated Photocatalysis. Journal of the American Chemical Society, 2018, 140, 13719-13725.	13.7	174
5	Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications. Journal of the American Chemical Society, 2016, 138, 8072-8075.	13.7	155
6	Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution. Nature Communications, 2020, 11, 4114.	12.8	112
7	Ultrafast Hole Trapping and Relaxation Dynamics in p-Type CuS Nanodisks. Journal of Physical Chemistry Letters, 2015, 6, 2671-2675.	4.6	97
8	Atomic Insight into the W-Doping Effect on Carrier Dynamics and Photoelectrochemical Properties of BiVO ₄ Photoanodes. Journal of Physical Chemistry C, 2016, 120, 1421-1427.	3.1	81
9	Direct Evidence of Photoinduced Charge Transport Mechanism in 2D Conductive Metal Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 21050-21058.	13.7	76
10	High-index faceted CuFeS ₂ nanosheets with enhanced behavior for boosting hydrogen evolution reaction. Nanoscale, 2017, 9, 9230-9237.	5.6	70
11	Real-Time Visualization of Active Species in a Single-Site Metal–Organic Framework Photocatalyst. ACS Energy Letters, 2018, 3, 532-539.	17.4	69
12	Photoactive Zeolitic Imidazolate Framework as Intrinsic Heterogeneous Catalysts for Light-Driven Hydrogen Generation. ACS Energy Letters, 2017, 2, 75-80.	17.4	64
13	Mechanistic Probes of Zeolitic Imidazolate Framework for Photocatalytic Application. ACS Catalysis, 2017, 7, 8446-8453.	11.2	56
14	Terahertz Spectroscopy of Emerging Materials. Journal of Physical Chemistry C, 2020, 124, 22335-22346.	3.1	55
15	Elucidating Charge Separation Dynamics in a Hybrid Metal–Organic Framework Photocatalyst for Light-Driven H ₂ Evolution. Journal of Physical Chemistry C, 2018, 122, 3305-3311.	3.1	49
16	Metal–Organic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy. Journal of the American Chemical Society, 2019, 141, 9793-9797.	13.7	44
17	Direct Observation of Node-to-Node Communication in Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2018, 140, 11573-11576.	13.7	32
18	The effect of Mo doping on the charge separation dynamics and photocurrent performance of BiVO ₄ photoanodes. Physical Chemistry Chemical Physics, 2016, 18, 32820-32825.	2.8	31

BRIAN PATTENGALE

#	Article	IF	CITATIONS
19	Single Copper Atoms Enhance Photoconductivity in g-C ₃ N ₄ . Journal of Physical Chemistry Letters, 2020, 11, 8873-8879.	4.6	25
20	Interrogating Light-initiated Dynamics in Metal–Organic Frameworks with Time-resolved Spectroscopy. Chemical Reviews, 2022, 122, 132-166.	47.7	22
21	Unravelling the Correlation of Electronic Structure and Carrier Dynamics in CulnS2 Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 974-980.	3.1	18
22	A conductive metal–organic framework photoanode. Chemical Science, 2020, 11, 9593-9603.	7.4	16
23	Conformational States of Cytochrome P450 Oxidoreductase Evaluated by Förster Resonance Energy Transfer Using Ultrafast Transient Absorption Spectroscopy. Biochemistry, 2016, 55, 5973-5976.	2.5	11
24	Photoinduced interfacial charge separation dynamics in zeolitic imidazolate framework. Physical Chemistry Chemical Physics, 2018, 20, 14884-14888.	2.8	11
25	Zeolitic imidazolate frameworks as intrinsic light harvesting and charge separation materials for photocatalysis. Journal of Chemical Physics, 2021, 154, 240901.	3.0	11
26	Selective Excited-State Dynamics in a Unique Set of Rationally Designed Ni Porphyrins. Journal of Physical Chemistry C, 2019, 123, 17994-18000.	3.1	8
27	Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivity. Polyhedron, 2021, 203, 115182.	2.2	7
28	Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid. Scientific Reports, 2016, 5, 18505.	3.3	6
29	THz Conductivity in Metal Organic Frameworks (MOF). , 2019, , .		0
30	THz-TDS and TRTS of Metal Organic Frameworks and 2D Materials. , 2021, , .		0
31	Metal Dopants Increase THz-Photoconductivity in g-C3N4. , 2021, , .		0