Claudia R Ball

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3233092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature Medicine, 2006, 12, 401-409.	30.7	1,129
2	Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nature Medicine, 2010, 16, 198-204.	30.7	727
3	Stem-Cell Gene Therapy for the Wiskott–Aldrich Syndrome. New England Journal of Medicine, 2010, 363, 1918-1927.	27.0	505
4	Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nature Genetics, 2017, 49, 65-74.	21.4	326
5	High-resolution insertion-site analysis by linear amplification–mediated PCR (LAM-PCR). Nature Methods, 2007, 4, 1051-1057.	19.0	281
6	Distinct Types of Tumor-Initiating Cells Form Human Colon Cancer Tumors and Metastases. Cell Stem Cell, 2011, 9, 357-365.	11.1	276
7	Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nature Communications, 2013, 4, 2610.	12.8	213
8	<i>NRG1</i> Fusions in <i>KRAS</i> Wild-Type Pancreatic Cancer. Cancer Discovery, 2018, 8, 1087-1095.	9.4	189
9	Comprehensive genomic access to vector integration in clinical gene therapy. Nature Medicine, 2009, 15, 1431-1436.	30.7	173
10	Specific Elimination of CD133+ Tumor Cells with Targeted Oncolytic Measles Virus. Cancer Research, 2013, 73, 865-874.	0.9	115
11	Targeted BiTE Expression by an Oncolytic Vector Augments Therapeutic Efficacy Against Solid Tumors. Clinical Cancer Research, 2018, 24, 2128-2137.	7.0	88
12	Extensive Methylation of Promoter Sequences Silences Lentiviral Transgene Expression During Stem Cell Differentiation In Vivo. Molecular Therapy, 2012, 20, 1014-1021.	8.2	87
13	Cell-of-Origin DNA Methylation Signatures Are Maintained during Colorectal Carcinogenesis. Cell Reports, 2018, 23, 3407-3418.	6.4	66
14	Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. Journal of Experimental Medicine, 2012, 209, 697-711.	8.5	63
15	Degradation of CCNK/CDK12 is a druggable vulnerability of colorectal cancer. Cell Reports, 2021, 36, 109394.	6.4	41
16	Succession of transiently active tumorâ€initiating cell clones in human pancreatic cancer xenografts. EMBO Molecular Medicine, 2017, 9, 918-932.	6.9	36
17	YAP Orchestrates Heterotypic Endothelial Cell Communication via HGF/c-MET Signaling in Liver Tumorigenesis. Cancer Research, 2020, 80, 5502-5514.	0.9	31
18	Genetic subclone architecture of tumor clone-initiating cells in colorectal cancer. Journal of Experimental Medicine, 2017, 214, 2073-2088.	8.5	30

CLAUDIA R BALL

#	Article	IF	CITATIONS
19	Transforming Growth Factor Beta Receptor 2 (TGFBR2) Changes Sialylation in the Microsatellite Unstable (MSI) Colorectal Cancer Cell Line HCT116. PLoS ONE, 2013, 8, e57074.	2.5	28
20	Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model. PLoS ONE, 2019, 14, e0211916.	2.5	27
21	Patient-derived xenografts of gastrointestinal cancers are susceptible to rapid and delayed B-lymphoproliferation. International Journal of Cancer, 2017, 140, 1356-1363.	5.1	26
22	Overexpression of EVI1 interferes with cytokinesis and leads to accumulation of cells with supernumerary centrosomes in G _{0/1} phase. Cell Cycle, 2012, 11, 3492-3503.	2.6	21
23	Transcriptome Profiling of Adipose Tissue Reveals Depot-Specific Metabolic Alterations Among Patients with Colorectal Cancer. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5225-5237.	3.6	21
24	YAPâ€induced Ccl2 expression is associated with a switch in hepatic macrophage identity and vascular remodelling in liver cancer. Liver International, 2021, 41, 3011-3023.	3.9	17
25	Stable differentiation and clonality of murine long-term hematopoiesis after extended reduced-intensity selection for MGMT P140K transgene expression. Blood, 2007, 110, 1779-1787.	1.4	16
26	Pheno-seq – linking visual features and gene expression in 3D cell culture systems. Scientific Reports, 2019, 9, 12367.	3.3	16
27	The notch target gene HEYL modulates metastasis forming capacity of colorectal cancer patient-derived spheroid cells in vivo. BMC Cancer, 2019, 19, 1181.	2.6	16
28	Mapping Active Gene-Regulatory Regions in Human Repopulating Long-Term HSCs. Cell Stem Cell, 2018, 23, 132-146.e9.	11.1	14
29	Colorectal cancerâ€initiating cells caught in the act. EMBO Molecular Medicine, 2017, 9, 856-858.	6.9	12
30	Stable Long-Term Blood Formation by Stem Cells in Murine Steady-State Hematopoiesis. Stem Cells, 2012, 30, 1961-1970.	3.2	11
31	Phenotypic differentiation does not affect tumorigenicity of primary human colon cancer initiating cells. Cancer Letters, 2016, 371, 326-333.	7.2	11
32	Functional States in Tumor-Initiating Cell Differentiation in Human Colorectal Cancer. Cancers, 2021, 13, 1097.	3.7	11
33	You Can Count on This: Barcoded Hematopoietic Stem Cells. Cell Stem Cell, 2011, 9, 390-392.	11.1	10
34	Systematic Generation of Patient-Derived Tumor Models in Pancreatic Cancer. Cells, 2019, 8, 142.	4.1	9
35	The balance between the intronic miR-342 and its host gene Evl determines hematopoietic cell fate decision. Leukemia, 2021, 35, 2948-2963.	7.2	9
36	Rational design of aqueous conjugated polymer nanoparticles as potential theranostic agents of breast cancer. Materials Chemistry Frontiers, 2021, 5, 4950-4962.	5.9	7

CLAUDIA R BALL

#	Article	IF	CITATIONS
37	A perivascular niche in the bone marrow hosts quiescent and proliferating tumorigenic colorectal cancer cells. International Journal of Cancer, 2020, 147, 519-531.	5.1	5
38	Comprehensive genomic characterization of gene therapy-induced T-cell acute lymphoblastic leukemia. Leukemia, 2020, 34, 2785-2789.	7.2	4
39	Hematopoietic activity of human short-term repopulating cells in mobilized peripheral blood cell transplants is restricted to the first 5 months after transplantation. Blood, 2010, 115, 5023-5025.	1.4	3
40	The Inherent Differentiation Program of Short-Term Hematopoietic Repopulating Cells Changes During Human Ontogeny. Stem Cells and Development, 2010, 19, 621-628.	2.1	3
41	Deregulated EVI1 Expression Leads to Genomic Instability and G1 Cell Cycle Arrest. Blood, 2011, 118, 2431-2431.	1.4	0
42	Tumororganoide als prȦ́¤linische Tumormodelle – Implikationen fù⁄4r Knochen- und Weichteiltumore. Osteologie, 2022, 31, 71-72.	0.1	0