Jun Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3232979/publications.pdf

Version: 2024-02-01

191 papers	14,329 citations	61 h-index	22166 113 g-index
194	194	194	14795
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Scalable Preparation of Highâ€Performance ZnO–SnO ₂ Cascaded Electron Transport Layer for Efficient Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100639.	5.8	13
2	Scalable Submicron Channel Fabrication by Suspended Nanofiber Lithography for Shortâ€Channel Fieldâ€Effect Transistors. Advanced Functional Materials, 2022, 32, 2109254.	14.9	9
3	Resonanceâ€Mediated Dynamic Modulation of Perovskite Crystallization for Efficient and Stable Solar Cells. Advanced Materials, 2022, 34, e2107111.	21.0	21
4	Perovskite-Nanosheet Sensitizer for Highly Efficient Organic X-ray Imaging Scintillator. ACS Energy Letters, 2022, 7, 10-16.	17.4	72
5	Nearly 100% energy transfer at the interface of metal-organic frameworks for X-ray imaging scintillators. Matter, 2022, 5, 253-265.	10.0	53
6	<scp>Twoâ€Dimensional</scp> Cathode Materials for Aqueous Rechargeable <scp>Zincâ€lon</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2022, 40, 973-988.	4.9	10
7	Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Applied Materials & Interfaces, 2022, 14, 9970-9986.	8.0	109
8	Engineering Surface Orientations for Efficient and Stable Hybrid Perovskite Single-Crystal Solar Cells. ACS Energy Letters, 2022, 7, 1544-1552.	17.4	24
9	Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of Low-Concentration Iodine at High Temperatures. Journal of the American Chemical Society, 2022, 144, 6821-6829.	13.7	89
10	Exciton Self-Trapping for White Emission in 100-Oriented Two-Dimensional Perovskites via Halogen Substitution. ACS Energy Letters, 2022, 7, 453-460.	17.4	50
11	Interface Engineering of Biâ€Fluorescence Molecules for Highâ€Performance Data Encryption and Ultralow UVâ€Light Detection. Advanced Optical Materials, 2022, 10, .	7.3	5
12	Installation of synergistic binding sites onto porous organic polymers for efficient removal of perfluorooctanoic acid. Nature Communications, 2022, 13, 2132.	12.8	49
13	Metal–Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication. Journal of the American Chemical Society, 2022, 144, 6813-6820.	13.7	23
14	Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nature Energy, 2022, 7, 427-437.	39.5	50
15	Synergistic Effect between NiO <i>_x</i> and P3HT Enabling Efficient and Stable Hole Transport Pathways for Regular Perovskite Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	17
16	Engineering a Kesteriteâ€Based Photocathode for Photoelectrochemical Ammonia Synthesis from NO <i>_x</i> Reduction. Advanced Materials, 2022, 34, .	21.0	17
17	Multiple exciton generation in tin–lead halide perovskite nanocrystals for photocurrent quantum efficiency enhancement. Nature Photonics, 2022, 16, 485-490.	31.4	40
18	Broadband white-light emission from a novel two-dimensional metal halide assembled by Pb–Cl hendecahedrons. Journal of Materials Chemistry C, 2022, 10, 9465-9470.	5.5	10

#	Article	IF	CITATIONS
19	Cylindrical Al Nano-Dimer Induced Polarization in Deep UV Region. Nanoscale Research Letters, 2022, 17, .	5.7	1
20	Lecithin Capping Ligands Enable Ultrastable Perovskite-Phase CsPbl ₃ Quantum Dots for Rec. 2020 Bright-Red Light-Emitting Diodes. Journal of the American Chemical Society, 2022, 144, 13302-13310.	13.7	59
21	High-mobility patternable MoS2 percolating nanofilms. Nano Research, 2021, 14, 2255.	10.4	27
22	Crown Etherâ€Assisted Growth and Scaling Up of FACsPbI ₃ Films for Efficient and Stable Perovskite Solar Modules. Advanced Functional Materials, 2021, 31, 2008760.	14.9	50
23	Hyperstable Perovskite Solar Cells Without Ion Migration and Metal Diffusion Based on ZnS Segregated Cubic ZnTiO ₃ Electron Transport Layers. Solar Rrl, 2021, 5, 2000654.	5.8	13
24	$ [Cu < sub > 23 < / sub > (PhSe) < sub > 16 < / sub > (Ph < sub > 3 < / sub > P) < sub > 8 < / sub > (H) < sub > 6 < / sub >] < b > \hat{A} \cdot < / b > BF < sub > Atomic-Level Insights into Cuboidal Polyhydrido Copper Nanoclusters and Their Quasi-simple Cubic Self-Assembly., 2021, 3, 90-99. $	4:	41
25	Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy and Environmental Science, 2021, 14, 4463-4473.	30.8	203
26	Understanding liquefaction in halide perovskites upon methylamine gas exposure. RSC Advances, 2021, 11, 20423-20428.	3.6	1
27	Oxidized eutectic gallium–indium (EGaIn) nanoparticles for broadband light response in a graphene-based photodetector. Materials Advances, 2021, 2, 4414-4422.	5.4	3
28	Recent Advances on Conductive 2D Covalent Organic Frameworks. Small, 2021, 17, e2006043.	10.0	77
29	CsMnBr ₃ : Lead-Free Nanocrystals with High Photoluminescence Quantum Yield and Picosecond Radiative Lifetime., 2021, 3, 290-297.		86
30	[Cu ₁₅ (PPh ₃) ₆ (PET) ₁₃] ²⁺ : a Copper Nanocluster with Crystallization Enhanced Photoluminescence. Small, 2021, 17, e2006839.	10.0	50
31	Successes and Challenges of Core/Shell Lead Halide Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 1340-1357.	17.4	100
32	Effect of Zincâ€Doping on the Reduction of the Hotâ€Carrier Cooling Rate in Halide Perovskites. Angewandte Chemie, 2021, 133, 11052-11058.	2.0	2
33	Effect of Zincâ€Doping on the Reduction of the Hotâ€Carrier Cooling Rate in Halide Perovskites. Angewandte Chemie - International Edition, 2021, 60, 10957-10963.	13.8	50
34	Gentle Materials Need Gentle Fabrication: Encapsulation of Perovskites by Gas-Phase Alumina Deposition. Journal of Physical Chemistry Letters, 2021, 12, 2348-2357.	4.6	8
35	Intriguing Ultrafast Charge Carrier Dynamics in Two-Dimensional Ruddlesden–Popper Hybrid Perovskites. Journal of Physical Chemistry C, 2021, 125, 9630-9637.	3.1	7
36	Theory-Guided Synthesis of Highly Luminescent Colloidal Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2021, 143, 5470-5480.	13.7	49

#	Article	IF	Citations
37	Perovskite Quantum Dots as Multifunctional Interlayers in Perovskite Solar Cells with Dopant-Free Organic Hole Transporting Layers. Journal of the American Chemical Society, 2021, 143, 5855-5866.	13.7	59
38	Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light: Science and Applications, 2021, 10, 113.	16.6	39
39	Shining Light on the Structure of Lead Halide Perovskite Nanocrystals. , 2021, 3, 845-861.		23
40	Luminescent Copper(I) Halides for Optoelectronic Applications. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100138.	2.4	22
41	Directional Exciton Migration in Benzoimidazole-Based Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12, 4917-4927.	4.6	10
42	Manipulation of hot carrier cooling dynamics in two-dimensional Dion–Jacobson hybrid perovskites via Rashba band splitting. Nature Communications, 2021, 12, 3995.	12.8	41
43	Self-Optimized Metal–Organic Framework Electrocatalysts with Structural Stability and High Current Tolerance for Water Oxidation. ACS Catalysis, 2021, 11, 7132-7143.	11.2	77
44	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
45	Cascade Electron Transfer Induces Slow Hot Carrier Relaxation in CsPbBr ₃ Asymmetric Quantum Wells. ACS Energy Letters, 2021, 6, 2602-2609.	17.4	13
46	Enhancement of Room-Temperature Photoluminescence and Valley Polarization of Monolayer and Bilayer WS ₂ via Chiral Plasmonic Coupling. ACS Applied Materials & Unterfaces, 2021, 13, 35097-35104.	8.0	9
47	Sulfonate-Assisted Surface Iodide Management for High-Performance Perovskite Solar Cells and Modules. Journal of the American Chemical Society, 2021, 143, 10624-10632.	13.7	101
48	Dual-Mode Plasmonic Coupling-Enhanced Color Conversion of Inorganic CsPbBr ₃ Perovskite Quantum Dot Films. ACS Applied Materials & Interfaces, 2021, 13, 32856-32864.	8.0	5
49	Air-Resistant Lead Halide Perovskite Nanocrystals Embedded into Polyimide of Intrinsic Microporosity. Energy Material Advances, 2021, 2021, .	11.0	21
50	Zincophilic Laserâ€Scribed Graphene Interlayer for Homogeneous Zinc Deposition and Stable Zincâ€Ion Batteries. Energy Technology, 2021, 9, 2100490.	3.8	21
51	Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nature Communications, 2021, 12, 4831.	12.8	56
52	An Aqueous Mg ²⁺ â€Based Dualâ€ion Battery with High Power Density. Advanced Functional Materials, 2021, 31, 2107523.	14.9	30
53	Linked Nickel Oxide/Perovskite Interface Passivation for Highâ€Performance Textured Monolithic Tandem Solar Cells. Advanced Energy Materials, 2021, 11, 2101662.	19.5	77
54	Single-Particle Spectroscopy as a Versatile Tool to Explore Lower-Dimensional Structures of Inorganic Perovskites. ACS Energy Letters, 2021, 6, 3695-3708.	17.4	6

#	Article	IF	CITATIONS
55	Elastomeric Nanodielectrics for Soft and Hysteresisâ€Free Electronics. Advanced Materials, 2021, 33, e2104761.	21.0	7
56	Cyanamide Passivation Enables Robust Elemental Imaging of Metal Halide Perovskites at Atomic Resolution. Journal of Physical Chemistry Letters, 2021, 12, 10402-10409.	4.6	15
57	Linked Nickel Oxide/Perovskite Interface Passivation for Highâ€Performance Textured Monolithic Tandem Solar Cells (Adv. Energy Mater. 40/2021). Advanced Energy Materials, 2021, 11, 2170160.	19.5	2
58	Luminescence and Stability Enhancement of Inorganic Perovskite Nanocrystals via Selective Surface Ligand Binding. ACS Nano, 2021, 15, 17998-18005.	14.6	32
59	28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule, 2021, 5, 3169-3186.	24.0	99
60	Large Polaron Self-Trapped States in Three-Dimensional Metal-Halide Perovskites., 2020, 2, 20-27.		33
61	Near-unity photoluminescence quantum yield in inorganic perovskite nanocrystals by metal-ion doping. Journal of Chemical Physics, 2020, 152, 020902.	3.0	42
62	Single Crystals: The Next Big Wave of Perovskite Optoelectronics. , 2020, 2, 184-214.		89
63	Lead-free, stable, high-efficiency (52%) blue luminescent FA ₃ Bi ₂ Br ₉ perovskite quantum dots. Nanoscale Horizons, 2020, 5, 580-585.	8.0	70
64	Interface Engineering of Cubic Zinc Metatitanate as an Excellent Electron Transport Material for Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900533.	5.8	12
65	Hydrated Mg <i>_x</i> V ₅ O ₁₂ Cathode with Improved Mg ²⁺ Storage Performance. Advanced Energy Materials, 2020, 10, 2002128.	19.5	31
66	Highâ€Resolution Printable and Elastomeric Conductors from Strainâ€Adaptive Assemblies of Metallic Nanoparticles with Low Aspect Ratios. Small, 2020, 16, 2004793.	10.0	13
67	High-Responsivity Photodetector Based on a Suspended Monolayer Graphene/RbAg ₄ 1 ₅ Composite Nanostructure. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50763-50771.	8.0	6
68	Synergistic combination of carbon-black and graphene for 3D printable stretchable conductors. Materials Technology, 2020, , 1 -10.	3.0	10
69	Modulation of Broadband Emissions in Two-Dimensional ⟠100⟠©-Oriented Ruddlesden†Popper Hybrid Perovskites. ACS Energy Letters, 2020, 5, 2149-2155.	17.4	75
70	Methylamine-Dimer-Induced Phase Transition toward MAPbl ₃ Films and High-Efficiency Perovskite Solar Modules. Journal of the American Chemical Society, 2020, 142, 6149-6157.	13.7	59
71	Doping Induces Structural Phase Transitions in All-Inorganic Lead Halide Perovskite Nanocrystals. , 2020, 2, 367-375.		42
72	Unprecedented Surface Plasmon Modes in Monoclinic MoO ₂ Nanostructures. Advanced Materials, 2020, 32, e1908392.	21.0	28

#	Article	IF	Citations
73	Infrared dielectric metamaterials from high refractive index chalcogenides. Nature Communications, 2020, 11, 1692.	12.8	45
74	Highly Stable Phosphonateâ€Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production. Advanced Materials, 2020, 32, e1906368.	21.0	117
75	Interface Matters: Enhanced Photoluminescence and Long-Term Stability of Zero-Dimensional Cesium Lead Bromide Nanocrystals <i>via</i> Gas-Phase Aluminum Oxide Encapsulation. ACS Applied Materials & Interfaces, 2020, 12, 35598-35605.	8.0	14
76	Defect Passivation in Perovskite Solar Cells by Cyanoâ€Based Ï€â€Conjugated Molecules for Improved Performance and Stability. Advanced Functional Materials, 2020, 30, 2002861.	14.9	87
77	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 793-798.	17.4	208
78	Investigating the Origin of Enhanced C ₂₊ Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO ₂ Electroreduction. Journal of the American Chemical Society, 2020, 142, 4213-4222.	13.7	236
79	Real-Space Mapping of Surface-Oxygen Defect States in Photovoltaic Materials Using Low-Voltage Scanning Ultrafast Electron Microscopy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7760-7767.	8.0	12
80	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	39.5	894
81	[Cu ₈₁ (PhS) ₄₆ (^{<i>t</i>} BuNH ₂) ₁₀ (H) ₃₂) Reveals the Coexistence of Large Planar Cores and Hemispherical Shells in High-Nuclearity Copper Nanoclusters. Journal of the American Chemical Society, 2020, 142, 8696-8705.	:/sub>] <sı 13.7</sı 	ıp>3+
82	Boosting Self-Trapped Emissions in Zero-Dimensional Perovskite Heterostructures. Chemistry of Materials, 2020, 32, 5036-5043.	6.7	46
83	Topological Insulator Chalcogenides for Infrared Dielectric Metamaterials. , 2020, , .		0
84	Layer-Dependent Coherent Acoustic Phonons in Two-Dimensional Ruddlesden–Popper Perovskite Crystals. Journal of Physical Chemistry Letters, 2019, 10, 5259-5264.	4.6	38
85	Emergence of multiple fluorophores in individual cesium lead bromide nanocrystals. Nature Communications, 2019, 10, 2930.	12.8	41
86	Tuning Hot Carrier Cooling Dynamics by Dielectric Confinement in Two-Dimensional Hybrid Perovskite Crystals. ACS Nano, 2019, 13, 12621-12629.	14.6	96
87	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie, 2019, 131, 16223-16227.	2.0	16
88	3D CoMoSe4 Nanosheet Arrays Converted Directly from Hydrothermally Processed CoMoO4 Nanosheet Arrays by Plasma-Assisted Selenization Process Toward Excellent Anode Material in Sodium-Ion Battery. Nanoscale Research Letters, 2019, 14, 213.	5.7	14
89	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie - International Edition, 2019, 58, 16077-16081.	13.8	49
90	Light-Trapping Engineering for the Enhancements of Broadband and Spectra-Selective Photodetection by Self-Assembled Dielectric Microcavity Arrays. Nanoscale Research Letters, 2019, 14, 187.	5.7	2

#	Article	IF	CITATIONS
91	MAPbl ₃ Single Crystals Free from Hole-Trapping Centers for Enhanced Photodetectivity. ACS Energy Letters, 2019, 4, 2579-2584.	17.4	40
92	Extraordinary Carrier Diffusion on CdTe Surfaces Uncovered by 4D Electron Microscopy. CheM, 2019, 5, 706-718.	11.7	21
93	Assembly of Atomically Precise Silver Nanoclusters into Nanocluster-Based Frameworks. Journal of the American Chemical Society, 2019, 141, 9585-9592.	13.7	132
94	Defect-Triggered Phase Transition in Cesium Lead Halide Perovskite Nanocrystals., 2019, 1, 185-191.		51
95	Compositionally Screened Eutectic Catalytic Coatings on Halide Perovskite Photocathodes for Photoassisted Selective CO ₂ Reduction. ACS Energy Letters, 2019, 4, 1279-1286.	17.4	56
96	Why are Hot Holes Easier to Extract than Hot Electrons from Methylammonium Lead Iodide Perovskite?. Advanced Energy Materials, 2019, 9, 1900084.	19.5	54
97	Polarization-Controllable Plasmonic Enhancement on the Optical Response of Two-Dimensional GaSe Layers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19631-19637.	8.0	11
98	Unprecedented Ultralow Detection Limit of Amines using a Thiadiazole-Functionalized Zr(IV)-Based Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7245-7249.	13.7	203
99	Ag ₂ S Quantum Dots as an Infrared Excited Photocatalyst for Hydrogen Production. ACS Applied Energy Materials, 2019, 2, 2751-2759.	5.1	40
100	Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency. Journal of the American Chemical Society, 2019, 141, 6345-6351.	13.7	149
101	Light-Induced Self-Assembly of Cubic CsPbBr ₃ Perovskite Nanocrystals into Nanowires. Chemistry of Materials, 2019, 31, 6642-6649.	6.7	119
102	White light emission in low-dimensional perovskites. Journal of Materials Chemistry C, 2019, 7, 4956-4969.	5 . 5	163
103	Visualization of Charge Carrier Trapping in Silicon at the Atomic Surface Level Using Four-Dimensional Electron Imaging. Journal of Physical Chemistry Letters, 2019, 10, 1960-1966.	4.6	8
104	Unlocking the Effect of Trivalent Metal Doping in All-Inorganic CsPbBr ₃ Perovskite. ACS Energy Letters, 2019, 4, 789-795.	17.4	116
105	Tunable Twisting Motion of Organic Linkers via Concentration and Hydrogen-Bond Formation. Journal of Physical Chemistry C, 2019, 123, 5900-5906.	3.1	14
106	Photoresponsive azobenzene ligand as an efficient electron acceptor for luminous CdTe quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 48-53.	3.9	10
107	Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules. Journal of Materials Chemistry A, 2019, 7, 26849-26857.	10.3	40
108	Reduced ion migration and enhanced photoresponse in cuboid crystals of methylammonium lead iodide perovskite. Journal Physics D: Applied Physics, 2019, 52, 054001.	2.8	14

#	Article	IF	CITATIONS
109	Tellurium-Based Double Perovskites A ₂ TeX ₆ with Tunable Band Gap and Long Carrier Diffusion Length for Optoelectronic Applications. ACS Energy Letters, 2019, 4, 228-234.	17.4	58
110	Ligand-Free Nanocrystals of Highly Emissive Cs ₄ PbBr ₆ Perovskite. Journal of Physical Chemistry C, 2018, 122, 6493-6498.	3.1	63
111	Manipulation of the crystallization of perovskite films induced by a rotating magnetic field during blade coating in air. Journal of Materials Chemistry A, 2018, 6, 3986-3995.	10.3	13
112	Characterization of the Valence and Conduction Band Levels of $\langle i \rangle n \langle i \rangle = 1$ 2D Perovskites: A Combined Experimental and Theoretical Investigation. Advanced Energy Materials, 2018, 8, 1703468.	19.5	76
113	Bidentate Ligand-Passivated CsPbl ₃ Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. Journal of the American Chemical Society, 2018, 140, 562-565.	13.7	745
114	Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Communications Physics, 2018, 1 , .	5.3	135
115	Layer-edge device of two-dimensional hybrid perovskites. Nature Communications, 2018, 9, 5196.	12.8	63
116	Structure-controlled optical thermoresponse in Ruddlesden-Popper layered perovskites. APL Materials, $2018, 6, .$	5.1	26
117	Layer-Dependent Rashba Band Splitting in 2D Hybrid Perovskites. Chemistry of Materials, 2018, 30, 8538-8545.	6.7	92
118	Halogen Migration in Hybrid Perovskites: The Organic Cation Matters. Journal of Physical Chemistry Letters, 2018, 9, 5474-5480.	4.6	119
119	Point Defects and Green Emission in Zero-Dimensional Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 5490-5495.	4.6	143
120	Giant Photoluminescence Enhancement in CsPbCl ₃ Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation. ACS Energy Letters, 2018, 3, 2301-2307.	17.4	244
121	Imaging the Reduction of Electron Trap States in Shelled Copper Indium Gallium Selenide Nanocrystals Using Ultrafast Electron Microscopy. Journal of Physical Chemistry C, 2018, 122, 15010-15016.	3.1	4
122	The Benefit and Challenges of Zero-Dimensional Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 4131-4138.	4.6	118
123	Tunable Multipolar Surface Plasmons in 2D Ti ₃ C ₂ <i>T</i> _{<i>x</i>} <mxene 12,="" 2018,="" 8485-8493.<="" acs="" flakes.="" nano,="" td=""><td>14.6</td><td>179</td></mxene>	14.6	179
124	Growth-Dynamic-Controllable Rapid Crystallization Boosts the Perovskite Photovoltaics' Robust Preparation: From Blade Coating to Painting. ACS Applied Materials & Diterfaces, 2018, 10, 23103-23111.	8.0	17
125	Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces. NPG Asia Materials, 2018, 10, 533-539.	7.9	108
126	Halogen migration and surface degradation in hybrid perovskites (Conference Presentation)., 2018,,.		O

#	Article	IF	Citations
127	Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Letters, 2017, 2, 417-423.	17.4	140
128	Polaron self-localization in white-light emitting hybrid perovskites. Journal of Materials Chemistry C, 2017, 5, 2771-2780.	5.5	196
129	Pyridine-Induced Dimensionality Change in Hybrid Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 4393-4400.	6.7	100
130	Synergetic SERS Enhancement in a Metal-Like/Metal Double-Shell Structure for Sensitive and Stable Application. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13564-13570.	8.0	22
131	Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters. Journal of the American Chemical Society, 2017, 139, 4318-4321.	13.7	152
132	Inner salt-shaped small molecular photosensitizer with extremely enhanced two-photon absorption for mitochondrial-targeted photodynamic therapy. Chemical Communications, 2017, 53, 1680-1683.	4.1	46
133	Room-Temperature Engineering of All-Inorganic Perovskite Nanocrsytals with Different Dimensionalities. Chemistry of Materials, 2017, 29, 8978-8982.	6.7	174
134	Plasmonics of topological insulators at optical frequencies. NPG Asia Materials, 2017, 9, e425-e425.	7.9	65
135	Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths. Journal of Physical Chemistry Letters, 2017, 8, 4386-4390.	4.6	83
136	Inside Perovskites: Quantum Luminescence from Bulk Cs ₄ PbBr ₆ Single Crystals. Chemistry of Materials, 2017, 29, 7108-7113.	6.7	200
137	CsPb ₂ Br ₅ Single Crystals: Synthesis and Characterization. ChemSusChem, 2017, 10, 3746-3749.	6.8	130
138	Unique Reversible Crystal-to-Crystal Phase Transition—Structural and Functional Properties of Fused Ladder Thienoarenes. Chemistry of Materials, 2017, 29, 7686-7696.	6.7	8
139	Molecular behavior of zero-dimensional perovskites. Science Advances, 2017, 3, e1701793.	10.3	187
140	Intrinsic Lead Ion Emissions in Zero-Dimensional Cs ₄ PbBr ₆ Nanocrystals. ACS Energy Letters, 2017, 2, 2805-2811.	17.4	133
141	Direct-Indirect Nature of the Bandgap in Lead-Free Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 3173-3177.	4.6	172
142	Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals. Nano Letters, 2017, 17, 4759-4767.	9.1	251
143	Visible Range Plasmonic Modes on Topological Insulator Nanostructures. Advanced Optical Materials, 2017, 5, 1600768.	7.3	55
144	Plasmonics of topological insulators at optical frequencies. , 2017, , .		0

#	Article	IF	CITATIONS
145	Small polarons in 2D perovskites. , 2017, , .		O
146	Facile synthesis of a hole transporting material with a silafluorene core for efficient mesoscopic CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 8750-8754.	10.3	36
147	A fused thieno [3,2-b] thiophene-dithiophene based donor molecule for organic photovoltaics: a structural comparative study with indacenodithiophene. Journal of Materials Chemistry C, 2016, 4, 9656-9663.	5.5	5
148	Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere. Journal of Materials Chemistry A, 2016, 4, 13203-13210.	10.3	77
149	Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films. Journal of the American Chemical Society, 2016, 138, 9919-9926.	13.7	249
150	First-Principles Study of the Nuclear Dynamics of Doped Conjugated Polymers. Journal of Physical Chemistry C, 2016, 120, 1994-2001.	3.1	25
151	Lead-Free MA ₂ CuCl _{<i>x</i>} Br _{4–<i>x</i>} Hybrid Perovskites. Inorganic Chemistry, 2016, 55, 1044-1052.	4.0	457
152	Enhancing Organic Phosphorescence by Manipulating Heavy-Atom Interaction. Crystal Growth and Design, 2016, 16, 808-813.	3.0	122
153	Light absorption enhancement by embedding submicron scattering TiO ₂ nanoparticles in perovskite solar cells. RSC Advances, 2016, 6, 24596-24602.	3.6	25
154	Trace surface-clean palladium nanosheets as a conductivity enhancer in hole-transporting layers to improve the overall performances of perovskite solar cells. Nanoscale, 2016, 8, 3274-3277.	5.6	24
155	Visible Range Plasmons in Topological Insulators. , 2016, , .		1
156	Perovskite Metamaterials., 2016,,.		0
157	Facile Synthesis of a Furan–Arylamine Holeâ€Transporting Material for Highâ€Efficiency, Mesoscopic Perovskite Solar Cells. Chemistry - A European Journal, 2015, 21, 15113-15117.	3.3	49
158	Femtosecond to Microsecond Dynamics of Soret-Band Excited Corroles. Journal of Physical Chemistry C, 2015, 119, 28691-28700.	3.1	27
159	Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer. Journal of Materials Chemistry A, 2015, 3, 16860-16866.	10.3	92
160	Lead iodide perovskite light-emitting field-effect transistor. Nature Communications, 2015, 6, 7383.	12.8	641
161	Multiple coupling in plasmonic metal/dielectric hollow nanocavity arrays for highly sensitive detection. Nanoscale, 2015, 7, 13495-13502.	5.6	7
162	Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale, 2015, 7, 9443-9447.	5.6	179

#	Article	IF	Citations
163	Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films. Journal of Physical Chemistry Letters, 2015, 6, 1396-1402.	4.6	141
164	Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 10914-10917.	13.7	229
165	Small-Size Effects on Electron Transfer in P3HT/InP Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 26783-26792.	3.1	10
166	Femtosecond to nanosecond excited states dynamics of novel Corroles. , 2014, , .		0
167	Plasmonic-enhanced self-cleaning activity on asymmetric Ag/ZnO surface-enhanced Raman scattering substrates under UV and visible light irradiation. Journal of Materials Chemistry A, 2014, 2, 7747-7753.	10.3	45
168	Multipole plasmon resonances in self-assembled metal hollow-nanospheres. Nanoscale, 2014, 6, 3934-3940.	5.6	27
169	Ambipolar Charge Photogeneration and Transfer at GaAs/P3HT Heterointerfaces. Journal of Physical Chemistry Letters, 2014, 5, 1144-1150.	4.6	9
170	Surface Plasmon Enhanced Hot Exciton Emission in Deep UVâ€Emitting AlGaN Multiple Quantum Wells. Advanced Optical Materials, 2014, 2, 451-458.	7.3	32
171	Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells. Chemical Science, 2014, 5, 2702-2709.	7.4	180
172	Mapping polarons in polymer FETs by charge modulation microscopy in the mid-infrared. Scientific Reports, 2014, 4, 3626.	3.3	18
173	Plasmonic Properties and Photoinduced Reflectance of Topological Insulator. , 2014, , .		0
174	PHOTOINDUCED CHARGE TRANSFER DYNAMICS AT HYBRID GAAS/P3HT INTERFACES. , 2014, , .		0
175	Charge Redistribution at GaAs/P3HT Heterointerfaces with Different Surface Polarity. Journal of Physical Chemistry Letters, 2013, 4, 3303-3309.	4.6	22
176	Ultrafast charge carrier dynamics in organic (opto)electronic materials., 2013,, 318-355.		1
177	Modulation of singlet and triplet excited states through if spacers in ternary 1,3,5-triazines. RSC Advances, 2013, 3, 13782.	3.6	6
178	Self-assembled hollow nanosphere arrays used as low Q whispering gallery mode resonators on thin film solar cells for light trapping. Physical Chemistry Chemical Physics, 2013, 15, 16874.	2.8	31
179	Photophysical properties of chirality: Experimental and theoretical studies of (R)- and (S)-binaphthol derivatives as a prototype case. Chemical Physics, 2013, 412, 34-40.	1.9	3
180	Effect of the surface-plasmon–exciton coupling and charge transfer process on the photoluminescence of metal–semiconductor nanostructures. Nanoscale, 2013, 5, 4436.	5.6	43

#	Article	IF	CITATIONS
181	Exceptional Blueshifted and Enhanced Aggregationâ€Induced Emission of Conjugated Asymmetric Triazines and Their Applications in Superamplified Detection of Explosives. Chemistry - A European Journal, 2012, 18, 15655-15661.	3.3	60
182	Theoretical study of organic molecules containing N or S atoms as receptors for $Hg(II)$ fluorescent sensors. Synthetic Metals, 2012, 162, 641-649.	3.9	22
183	Ag nanoparticle/ZnO hollow nanosphere arrays: large scale synthesis and surface plasmon resonance effect induced Raman scattering enhancement. Journal of Materials Chemistry, 2012, 22, 7902.	6.7	82
184	Theoretical Study of Charge-Transfer Properties of the π-Stacked Poly(1,1-silafluorene)s. Journal of Physical Chemistry C, 2011, 115, 14778-14785.	3.1	24
185	Novel heterofluorene-based hosts for highly efficient blue electrophosphorescence at low operating voltages. Organic Electronics, 2011, 12, 1619-1624.	2.6	29
186	Conjugated Asymmetric Donorâ€Substituted 1,3,5â€Triazines: New Host Materials for Blue Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2011, 17, 10871-10878.	3.3	75
187	Highly efficient and stable blueâ€lightâ€emitting binaphtholâ€fluorene copolymers: A joint experimental and theoretical study of the mainâ€chain chirality. Journal of Polymer Science Part A, 2010, 48, 3868-3879.	2.3	17
188	Theoretical Studies of the Structural, Electronic, and Optical Properties of Phosphafluorenes. Journal of Physical Chemistry A, 2010, 114, 3655-3667.	2.5	59
189	Tuning the Optoelectronic Properties of 4,4′- <i>N</i> , <i>N</i> ,ê²-Dicarbazole-biphenyl through Heteroatom Linkage: New Host Materials for Phosphorescent Organic Light-Emitting Diodes. Organic Letters, 2010, 12, 3438-3441.	4.6	71
190	Carbazole endcapped heterofluorenes as host materials: theoretical study of their structural, electronic, and optical properties. Physical Chemistry Chemical Physics, 2010, 12, 15448.	2.8	51
191	Ballistic Carrier Diffusion on Semiconductor Surfaces Uncovered by 4D Electron Microscopy., 0,,.		O