
Liping Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3232249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On-off-on fluorescence detection for biomolecules by a fluorescent cage through host-guest complexation in water. Chinese Chemical Letters, 2022, 33, 2459-2463.	9.0	27
2	Stabilization and Multiple-Responsive Recognition of Natural Base Pairs in Water by a Cationic Cage. CCS Chemistry, 2022, 4, 2914-2920.	7.8	15
3	A fluorescent, chirality-responsive, and water-soluble cage as a multifunctional molecular container for drug delivery. Organic and Biomolecular Chemistry, 2022, 20, 3998-4005.	2.8	5
4	Successive construction of cucurbit[8]uril-based covalent organic frameworks from a supramolecular organic framework through photochemical reactions in water. Science China Chemistry, 2022, 65, 1279-1285.	8.2	7
5	Adaptive Chirality of an Achiral Cucurbit[8]urilâ€Based Supramolecular Organic Framework for Chirality Induction in Water. Angewandte Chemie - International Edition, 2021, 60, 6744-6751.	13.8	73
6	Stepwise enhancement of fluorescence induced by anion coordination and non-covalent interactions. Dalton Transactions, 2021, 50, 76-80.	3.3	5
7	Adaptive Chirality of an Achiral Cucurbit[8]urilâ€Based Supramolecular Organic Framework for Chirality Induction in Water. Angewandte Chemie, 2021, 133, 6818-6825.	2.0	18
8	Adaptive chirality of achiral tetraphenylethene-based tetracationic cyclophanes with dual responses of fluorescence and circular dichroism in water. Chemical Communications, 2021, 57, 3135-3138.	4.1	24
9	Efficient Photoinduced Energy and Electron Transfers in a Tetraphenylethene-Based Octacationic Cage Through Host–Guest Complexation. ACS Applied Materials & Interfaces, 2021, 13, 16837-16845.	8.0	21
10	Aggregation-induced emission and self-assembly of functional tetraphenylethene-based tetracationic dicyclophanes for selective detection of ATP in water. Chinese Chemical Letters, 2021, 32, 3531-3534.	9.0	28
11	Hierarchical Two‣evel Supramolecular Chirality of an Achiral Anthraceneâ€Based Tetracationic Nanotube in Water. Angewandte Chemie - International Edition, 2021, 60, 15354-15358.	13.8	41
12	Hierarchical Two‣evel Supramolecular Chirality of an Achiral Anthraceneâ€Based Tetracationic Nanotube in Water. Angewandte Chemie, 2021, 133, 15482-15486.	2.0	12
13	Polyanion and anionic surface monitoring in aqueous medium enabled by an ionic host-guest complex. Sensors and Actuators B: Chemical, 2021, 340, 129916.	7.8	0
14	Adaptive Chirality of an Achiral Cage: Chirality Transfer, Induction, and Circularly Polarized Luminescence through Aqueous Host–Guest Complexation. CCS Chemistry, 2021, 3, 2749-2763.	7.8	44
15	Synthesis and aqueous anion recognition of an imidazolium-based nonacationic cup. Chemical Communications, 2021, 57, 13377-13380.	4.1	4
16	Host–Guest Recognition and Fluorescence of a Tetraphenyletheneâ€Based Octacationic Cage. Angewandte Chemie - International Edition, 2020, 59, 10101-10110.	13.8	98
17	Host–Guest Recognition and Fluorescence of a Tetraphenyletheneâ€Based Octacationic Cage. Angewandte Chemie, 2020, 132, 10187-10196.	2.0	14
18	A tetraphenylethene-based Pd ₂ L ₄ metallacage with aggregation-induced emission and stimuli-responsive behavior. Dalton Transactions, 2020, 49, 8051-8055.	3.3	13

LIPING CAO

#	Article	IF	CITATIONS
19	Supramolecular Organic Frameworks with Controllable Shape and Aggregationâ€Induced Emission for Tunable Luminescent Materials through Aqueous Host–Guest Complexation. Advanced Optical Materials, 2020, 8, 1902154.	7.3	35
20	Tetraphenylethene-based tetracationic dicyclophanes: synthesis, mechanochromic luminescence, and photochemical reactions. Chemical Communications, 2020, 56, 3195-3198.	4.1	37
21	Tetraphenylethene-Based Platinum(II) Bis-Triangular Dicycles with Tunable Emissions. Inorganic Chemistry, 2020, 59, 5713-5720.	4.0	14
22	Tetraphenylethene-Based Supramolecular Coordination Frameworks with Aggregation-Induced Emission for an Artificial Light-Harvesting System. ACS Applied Materials & Interfaces, 2020, 12, 22630-22639.	8.0	59
23	Tetraphenylethene-based tetracationic cyclophanes and their selective recognition for amino acids and adenosine derivatives in water. Chemical Communications, 2019, 55, 2372-2375.	4.1	40
24	Diamondoid Frameworks via Supramolecular Coordination: Structural Characterization, Metallogel Formation, and Adsorption Study. Inorganic Chemistry, 2019, 58, 6268-6275.	4.0	11
25	Aggregation-Induced Emission and Light-Harvesting Function of Tetraphenylethene-Based Tetracationic Dicyclophane. Journal of the American Chemical Society, 2019, 141, 8412-8415.	13.7	155
26	Pseudo[<i>n</i> , <i>m</i>]rotaxanes of Cucurbit[7/8]uril and Viologenâ€Naphthalene Derivative: A Precise Definition of Rotaxane. Chinese Journal of Chemistry, 2019, 37, 269-275.	4.9	16
27	Coordination-Driven Self-Assembled Metallacycles Incorporating Pyrene: Fluorescence Mutability, Tunability, and Aromatic Amine Sensing. Journal of the American Chemical Society, 2019, 141, 1757-1765.	13.7	126
28	Shapeâ€Controllable and Fluorescent Supramolecular Organic Frameworks Through Aqueous Host–Guest Complexation. Angewandte Chemie, 2018, 130, 737-741.	2.0	31
29	Shapeâ€Controllable and Fluorescent Supramolecular Organic Frameworks Through Aqueous Host–Guest Complexation. Angewandte Chemie - International Edition, 2018, 57, 729-733.	13.8	161
30	Diamondoid Supramolecular Coordination Frameworks from Discrete Adamantanoid Platinum(II) Cages. Journal of the American Chemical Society, 2018, 140, 7005-7011.	13.7	44
31	Unraveling the Structure–Affinity Relationship between Cucurbit[<i>n</i>]urils (<i>n</i> = 7, 8) and Cationic Diamondoids. Journal of the American Chemical Society, 2017, 139, 3249-3258.	13.7	66
32	Crystalline nanotubular framework constructed by cucurbit[8]uril for selective CO ₂ adsorption. Chemical Communications, 2017, 53, 5503-5506.	4.1	21
33	Cucurbit[10]uril-Based [2]Rotaxane: Preparation and Supramolecular Assembly-Induced Fluorescence Enhancement. Journal of Organic Chemistry, 2017, 82, 5590-5596.	3.2	53
34	Square [5]molecular necklace formed from cucurbit[8]uril and carbazole derivative. Tetrahedron Letters, 2016, 57, 2306-2310.	1.4	15
35	Supramolecular organic frameworks of cucurbit[n]uril-based [2]pseudorotaxanes in the crystalline state. CrystEngComm, 2016, 18, 7929-7933.	2.6	11
36	A Nexus between Theory and Experiment: Nonâ€Empirical Quantum Mechanical Computational Methodology Applied to Cucurbit[<i>n</i>]urilâ‹Guest Binding Interactions. Chemistry - A European Journal, 2016, 22, 17226-17238.	3.3	29

LIPING CAO

#	Article	IF	CITATIONS
37	Encapsulation of Halocarbons in a Tetrahedral Anion Cage. Angewandte Chemie - International Edition, 2015, 54, 8658-8661.	13.8	81
38	Hydrophobic monofunctionalized cucurbit[7]uril undergoes self-inclusion complexation and forms vesicle-type assemblies. Chemical Communications, 2015, 51, 3762-3765.	4.1	28
39	Dimeric packing of molecular clips induced by interactions between π-systems. CrystEngComm, 2015, 17, 2486-2495.	2.6	6
40	Influence of hydrophobic residues on the binding of CB[7] toward diammonium ions of common ammoniumâ< ammonium distance. Organic and Biomolecular Chemistry, 2015, 13, 6249-6254.	2.8	18
41	Absolute and relative binding affinity of cucurbit[7]uril towards a series of cationic guests. Supramolecular Chemistry, 2014, 26, 251-258.	1.2	50
42	Cucurbit[7]urilâ‹Guest Pair with an Attomolar Dissociation Constant. Angewandte Chemie - International Edition, 2014, 53, 988-993.	13.8	356
43	Design, Synthesis, and Xâ€ray Structural Analyses of Diamantane Diammonium Salts: Guests for Cucurbit[<i>n</i>]uril (CB[<i>n</i>]) Hosts. European Journal of Organic Chemistry, 2014, 2014, 2533-2542.	2.4	22
44	Cucurbit[7]uril Containers for Targeted Delivery of Oxaliplatin to Cancer Cells. Angewandte Chemie - International Edition, 2013, 52, 12033-12037.	13.8	149
45	Cucurbit[7]uril Containers for Targeted Delivery of Oxaliplatin to Cancer Cells. Angewandte Chemie, 2013, 125, 12255-12259.	2.0	13
46	Daisy Chain Assembly Formed from a Cucurbit[6]uril Derivative. Organic Letters, 2012, 14, 3072-3075.	4.6	82
47	Synthesis and Self-Assembly Processes of Monofunctionalized Cucurbit[7]uril. Journal of the American Chemical Society, 2012, 134, 13133-13140.	13.7	212
48	Templated Synthesis of Glycoluril Hexamer and Monofunctionalized Cucurbit[6]uril Derivatives. Journal of the American Chemical Society, 2011, 133, 17966-17976.	13.7	159