Guorui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3231625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical Size Effect of Freestanding Nanoconfined Polymer Films. Macromolecules, 2022, 55, 1248-1259.	4.8	18
2	Mechanical Behavior of Blisters Spontaneously Formed by Multilayer 2D Materials. Advanced Materials Interfaces, 2022, 9, .	3.7	12
3	Sectorization of Macromolecular Single Crystals Unveiled by Probing Shear Anisotropy. ACS Macro Letters, 2022, 11, 53-59.	4.8	0

5	Trade-off between interface stiffening and Young's modulus weakening in graphene/PMMA nanocomposites. Composites Science and Technology, 2022, 225, 109483.	7.8	12
6	Interface mechanics in carbon nanomaterials-based nanocomposites. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106212.	7.6	43
7	Out-of-Plane Deformations Determined Mechanics of Vanadium Disulfide (VS ₂) Sheets. ACS Applied Materials & Interfaces, 2021, 13, 3040-3050.	8.0	21
8	Raman signatures of defects-dependent vibration modes in boron doped monolayer to multilayer graphene. Optik, 2021, 228, 166232.	2.9	6
9	Interfacial Interactions and Tribological Behavior of Metal-Oxide/2D-Material Contacts. Tribology Letters, 2021, 69, 1.	2.6	8
10	Application of Graphene in Fiber-Reinforced Cementitious Composites: A Review. Energies, 2021, 14, 4614.	3.1	23
11	Elastocapillary cleaning of twisted bilayer graphene interfaces. Nature Communications, 2021, 12, 5069.	12.8	19
12	Fatigue resistance of atomically thin graphene oxide. Carbon, 2021, 183, 780-788.	10.3	14
13	Friction of magnetene, a non–van der Waals 2D material. Science Advances, 2021, 7, eabk2041.	10.3	21
14	Graphene fatigue through van der Waals interactions. Science Advances, 2020, 6, .	10.3	22
15	Preparation of Twisted Bilayer Graphene via the Wetting Transfer Method. ACS Applied Materials & Interfaces, 2020, 12, 40958-40967.	8.0	35
16	Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105927.	7.6	85
17	Structureâ€Dependent Wear and Shear Mechanics of Nanostructured MoS ₂ Coatings. Advanced Materials Interfaces, 2020, 7, 1901870.	3.7	13
18	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	19.5	36

GUORUI WANG

#	Article	IF	CITATIONS
19	Toughening of graphene-based polymer nanocomposites via tuning chemical functionalization. Composites Science and Technology, 2020, 194, 108140.	7.8	44
20	Mechanical Behavior at Graphene/Polymer Interfaces Under Uniaxial Tension. Springer Theses, 2020, , 25-49.	0.1	0
21	Bending of Multilayer van der Waals Materials. Physical Review Letters, 2019, 123, 116101.	7.8	139
22	A Mock Gas Molecules Model for Accurately Simulating Pressure Load at Micro- and Nanoscales. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	2
23	Ultrastrong Graphene Films via Long-Chain π-Bridging. Matter, 2019, 1, 389-401.	10.0	108
24	Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors. ACS Nano, 2019, 13, 5541-5548.	14.6	96
25	Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating?. Nano Research, 2019, 12, 1571-1577.	10.4	29
26	Mechanical responses of boron-doped monolayer graphene. Carbon, 2019, 147, 594-601.	10.3	28
27	Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale, 2019, 11, 22804-22812.	5.6	106
28	Bending induced interlayer shearing, rippling and kink buckling of multilayered graphene sheets. Journal of the Mechanics and Physics of Solids, 2019, 122, 340-363.	4.8	54
29	Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2019, 117, 11-22.	7.6	100
30	Elastomer-Free, Stretchable, and Conformable Silver Nanowire Conductors Enabled by Three-Dimensional Buckled Microstructures. ACS Applied Materials & Interfaces, 2019, 11, 6541-6549.	8.0	30
31	Engineering Surface Patterns with Shape Memory Polymers: Multiple Design Dimensions for Diverse and Hierarchical Structures. ACS Applied Materials & Interfaces, 2019, 11, 1563-1570.	8.0	23
32	Hierarchicalâ€structureâ€dependent high ductility of electrospun polyoxymethylene nanofibers. Journal of Applied Polymer Science, 2019, 136, 47086.	2.6	5
33	Engineering the interface in mechanically responsive graphene-based films. RSC Advances, 2018, 8, 36257-36263.	3.6	13
34	Interface-Governed Deformation of Nanobubbles and Nanotents Formed by Two-Dimensional Materials. Physical Review Letters, 2018, 121, 266101.	7.8	86
35	Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS Applied Materials & Interfaces, 2018, 10, 33049-33059.	8.0	58
36	Extended Hencky solution for the blister test of nanomembrane. Extreme Mechanics Letters, 2018, 22, 69-78.	4.1	20

GUORUI WANG

#	Article	IF	CITATIONS
37	Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading. Composites Science and Technology, 2017, 149, 220-227.	7.8	38
38	Measuring Interlayer Shear Stress in Bilayer Graphene. Physical Review Letters, 2017, 119, 036101.	7.8	155
39	Interlayer Coupling Behaviors of Boron Doped Multilayer Graphene. Journal of Physical Chemistry C, 2017, 121, 26034-26043.	3.1	33
40	Preparation of lipophilic graphene oxide derivates via a concise route and its mechanical reinforcement in thermoplastic polyurethane. Composites Science and Technology, 2016, 134, 36-42.	7.8	28
41	Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces. Composites Science and Technology, 2016, 136, 1-9.	7.8	80
42	Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 22554-22562.	8.0	84
43	Biaxial compressive behavior of embedded monolayer graphene inside flexible poly (methyl) Tj ETQq1 1 0.784314	rgBT /Ove 10.3	erlock 10 Tf
44	Effect of folded and crumpled morphologies of graphene oxide platelets on the mechanical performances of polymer nanocomposites. Polymer, 2015, 68, 131-139.	3.8	45
45	Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. Journal of Materials Chemistry A, 2015, 3, 8380-8388.	10.3	56
46	CNT buckypaper/thermoplastic polyurethane composites with enhanced stiffness, strength and toughness. Composites Science and Technology, 2014, 103, 63-71.	7.8	90