Guorui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3231625/publications.pdf

Version: 2024-02-01

236925 254184 1,967 46 25 43 citations h-index g-index papers 47 47 47 2405 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Measuring Interlayer Shear Stress in Bilayer Graphene. Physical Review Letters, 2017, 119, 036101.	7.8	155
2	Bending of Multilayer van der Waals Materials. Physical Review Letters, 2019, 123, 116101.	7.8	139
3	Ultrastrong Graphene Films via Long-Chain π-Bridging. Matter, 2019, 1, 389-401.	10.0	108
4	Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale, 2019, 11, 22804-22812.	5.6	106
5	Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2019, 117, 11-22.	7.6	100
6	Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors. ACS Nano, 2019, 13, 5541-5548.	14.6	96
7	CNT buckypaper/thermoplastic polyurethane composites with enhanced stiffness, strength and toughness. Composites Science and Technology, 2014, 103, 63-71.	7.8	90
8	Interface-Governed Deformation of Nanobubbles and Nanotents Formed by Two-Dimensional Materials. Physical Review Letters, 2018, 121, 266101.	7.8	86
9	Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105927.	7.6	85
10	Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites. ACS Applied Materials & Diterfaces, 2016, 8, 22554-22562.	8.0	84
11	Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces. Composites Science and Technology, 2016, 136, 1-9.	7.8	80
12	Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33049-33059.	8.0	58
13	Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. Journal of Materials Chemistry A, 2015, 3, 8380-8388.	10.3	56
14	Bending induced interlayer shearing, rippling and kink buckling of multilayered graphene sheets. Journal of the Mechanics and Physics of Solids, 2019, 122, 340-363.	4.8	54
15	Effect of folded and crumpled morphologies of graphene oxide platelets on the mechanical performances of polymer nanocomposites. Polymer, 2015, 68, 131-139.	3.8	45
16	Toughening of graphene-based polymer nanocomposites via tuning chemical functionalization. Composites Science and Technology, 2020, 194, 108140.	7.8	44
17	Interface mechanics in carbon nanomaterials-based nanocomposites. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106212.	7.6	43
18	Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading. Composites Science and Technology, 2017, 149, 220-227.	7.8	38

#	Article	IF	Citations
19	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	19.5	36
20	Preparation of Twisted Bilayer Graphene via the Wetting Transfer Method. ACS Applied Materials & Interfaces, 2020, 12, 40958-40967.	8.0	35
21	Interlayer Coupling Behaviors of Boron Doped Multilayer Graphene. Journal of Physical Chemistry C, 2017, 121, 26034-26043.	3.1	33
22	Elastomer-Free, Stretchable, and Conformable Silver Nanowire Conductors Enabled by Three-Dimensional Buckled Microstructures. ACS Applied Materials & Interfaces, 2019, 11, 6541-6549.	8.0	30
23	Biaxial compressive behavior of embedded monolayer graphene inside flexible poly (methyl) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf
24	Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating?. Nano Research, 2019, 12, 1571-1577.	10.4	29
25	Preparation of lipophilic graphene oxide derivates via a concise route and its mechanical reinforcement in thermoplastic polyurethane. Composites Science and Technology, 2016, 134, 36-42.	7.8	28
26	Mechanical responses of boron-doped monolayer graphene. Carbon, 2019, 147, 594-601.	10.3	28
27	Engineering Surface Patterns with Shape Memory Polymers: Multiple Design Dimensions for Diverse and Hierarchical Structures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1563-1570.	8.0	23
28	Application of Graphene in Fiber-Reinforced Cementitious Composites: A Review. Energies, 2021, 14, 4614.	3.1	23
29	Graphene fatigue through van der Waals interactions. Science Advances, 2020, 6, .	10.3	22
30	Out-of-Plane Deformations Determined Mechanics of Vanadium Disulfide (VS ₂) Sheets. ACS Applied Materials & Determined Mechanics of Vanadium Disulfide (VS ₂) Sheets.	8.0	21
31	Friction of magnetene, a non–van der Waals 2D material. Science Advances, 2021, 7, eabk2041.	10.3	21
32	Extended Hencky solution for the blister test of nanomembrane. Extreme Mechanics Letters, 2018, 22, 69-78.	4.1	20
33	Elastocapillary cleaning of twisted bilayer graphene interfaces. Nature Communications, 2021, 12, 5069.	12.8	19
34	Mechanical Size Effect of Freestanding Nanoconfined Polymer Films. Macromolecules, 2022, 55, 1248-1259.	4.8	18
35	Fatigue resistance of atomically thin graphene oxide. Carbon, 2021, 183, 780-788.	10.3	14
36	Engineering the interface in mechanically responsive graphene-based films. RSC Advances, 2018, 8, 36257-36263.	3.6	13

#	Article	IF	CITATIONS
37	Structureâ€Dependent Wear and Shear Mechanics of Nanostructured MoS ₂ Coatings. Advanced Materials Interfaces, 2020, 7, 1901870.	3.7	13
38	Mechanical Behavior of Blisters Spontaneously Formed by Multilayer 2D Materials. Advanced Materials Interfaces, 2022, 9, .	3.7	12
39	Trade-off between interface stiffening and Young's modulus weakening in graphene/PMMA nanocomposites. Composites Science and Technology, 2022, 225, 109483.	7.8	12
40	Interfacial Interactions and Tribological Behavior of Metal-Oxide/2D-Material Contacts. Tribology Letters, 2021, 69, 1.	2.6	8
41	Raman signatures of defects-dependent vibration modes in boron doped monolayer to multilayer graphene. Optik, 2021, 228, 166232.	2.9	6
42	Hierarchicalâ€structureâ€dependent high ductility of electrospun polyoxymethylene nanofibers. Journal of Applied Polymer Science, 2019, 136, 47086.	2.6	5
43	A Mock Gas Molecules Model for Accurately Simulating Pressure Load at Micro- and Nanoscales. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	2
44	Mechanical Behavior at Graphene/Polymer Interfaces Under Uniaxial Tension. Springer Theses, 2020, , 25-49.	0.1	0
45	Sectorization of Macromolecular Single Crystals Unveiled by Probing Shear Anisotropy. ACS Macro Letters, 2022, 11, 53-59.	4.8	0

Mechanical Behavior of Blisters Spontaneously Formed by Multilayer 2D Materials (Adv. Mater.) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 38