Francesco Manfredi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3231526/publications.pdf

Version: 2024-02-01

23 658 12 22 g-index

27 27 27 826

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Strong SARS-CoV-2 N-Specific CD8+ T Immunity Induced by Engineered Extracellular Vesicles Associates with Protection from Lethal Infection in Mice. Viruses, 2022, 14, 329.	1.5	11
2	Generation, Characterization, and Count of Fluorescent Extracellular Vesicles. Methods in Molecular Biology, 2022, 2504, 207-217.	0.4	0
3	Activation of Anti-SARS-CoV-2 Human CTLs by Extracellular Vesicles Engineered with the N Viral Protein. Vaccines, 2022, 10, 1060.	2.1	4
4	Simultaneous CD8+ T-Cell Immune Response against SARS-Cov-2 S, M, and N Induced by Endogenously Engineered Extracellular Vesicles in Both Spleen and Lungs. Vaccines, 2021, 9, 240.	2.1	20
5	The C-Terminal Domain of Nefmut Is Dispensable for the CD8+ T Cell Immunogenicity of In Vivo Engineered Extracellular Vesicles. Vaccines, 2021, 9, 373.	2.1	4
6	Long-Term Antitumor CD8+ T Cell Immunity Induced by Endogenously Engineered Extracellular Vesicles. Cancers, 2021, 13, 2263.	1.7	5
7	Extracellular vesicle-mediated intercellular communication in HIV-1 infection and its role in the reservoir maintenance. Cytokine and Growth Factor Reviews, 2020, 51, 40-48.	3.2	6
8	Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. International Journal of Molecular Sciences, 2020, 21, 6318.	1.8	17
9	N-Terminal Fatty Acids of NEFMUT Are Required for the CD8+ T-Cell Immunogenicity of In Vivo Engineered Extracellular Vesicles. Vaccines, 2020, 8, 243.	2.1	8
10	Engineered Extracellular Vesicles/Exosomes as a New Tool against Neurodegenerative Diseases. Pharmaceutics, 2020, 12, 529.	2.0	11
11	<p>The Intracellular Delivery Of Anti-HPV16 E7 scFvs Through Engineered Extracellular Vesicles Inhibits The Proliferation Of HPV-Infected Cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 8755-8768.	3.3	18
12	An Exosomeâ€Based Vaccine Platform Imparts Cytotoxic T Lymphocyte Immunity Against Viral Antigens. Biotechnology Journal, 2018, 13, e1700443.	1.8	77
13	Engineered exosomes emerging from muscle cells break immune tolerance to HER2 in transgenic mice and induce antigen-specific CTLs upon challenge by human dendritic cells. Journal of Molecular Medicine, 2018, 96, 211-221.	1.7	29
14	DNA Vectors Generating Engineered Exosomes Potential CTL Vaccine Candidates Against AIDS, Hepatitis B, and Tumors. Molecular Biotechnology, 2018, 60, 773-782.	1.3	24
15	Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir. Archives of Virology, 2017, 162, 2565-2577.	0.9	11
16	Antitumor HPV E7-specific CTL activity elicited by in vivo engineered exosomes produced through DNA inoculation. International Journal of Nanomedicine, 2017, Volume 12, 4579-4591.	3.3	58
17	The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant. Vaccines, 2016, 4, 42.	2.1	13
18	Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology, 2015, 12, 87.	0.9	77

#	Article	IF	CITATIONS
19	The Contribution of Extracellular Nef to HIV-Induced Pathogenesis. Current Drug Targets, 2015, 17, 46-53.	1.0	16
20	HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response. Viruses, 2015, 7, 1079-1099.	1.5	47
21	Uncovering the role of defective HIV-1 in spreading viral infection. Future Virology, 2015, 10, 371-381.	0.9	1
22	Cell activation and HIV-1 replication in unstimulated CD4+T lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology, 2014, 11, 46.	0.9	52
23	Exosomes from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Cells License Quiescent CD4 ⁺ T Lymphocytes To Replicate HIV-1 through a Nef- and ADAM17-Dependent Mechanism. Journal of Virology, 2014, 88, 11529-11539.	1.5	140