List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/323146/publications.pdf Version: 2024-02-01

LUC ROUNSVELD

#	Article	IF	CITATIONS
1	Fragment-based exploration of the 14-3-3/Amot-p130 interface. Current Research in Structural Biology, 2022, 4, 21-28.	2.2	5
2	Cooperativity as quantification and optimization paradigm for nuclear receptor modulators. Chemical Science, 2022, 13, 2744-2752.	7.4	9
3	DNAâ€Mediated Protein Shuttling between Coacervateâ€Based Artificial Cells. Angewandte Chemie, 2022, 134, .	2.0	2
4	DNAâ€Mediated Protein Shuttling between Coacervateâ€Based Artificial Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
5	Macrocycle-stabilization of its interaction with 14-3-3 increases plasma membrane localization and activity of CFTR. Nature Communications, 2022, 13, .	12.8	13
6	Indazole MRL-871 interacts with PPARγ via a binding mode that induces partial agonism. Bioorganic and Medicinal Chemistry, 2022, 68, 116877.	3.0	1
7	Switchable Control of Scaffold Protein Activity via Engineered Phosphoregulated Autoinhibition. ACS Synthetic Biology, 2022, 11, 2464-2472.	3.8	3
8	Light-driven release of cucurbit[8]uril from a bivalent cage. Chemical Science, 2021, 12, 6726-6731.	7.4	4
9	Sensitive cell-free tumor DNA analysis in supernatant pleural effusions supports therapy selection and disease monitoring of lung cancer patients. Cancer Treatment and Research Communications, 2021, 29, 100449.	1.7	3
10	Cooperativity between the orthosteric and allosteric ligand binding sites of RORÎ ³ t. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
11	Orthosteric and Allosteric Dual Targeting of the Nuclear Receptor RORÎ ³ t with a Bitopic Ligand. ACS Chemical Biology, 2021, 16, 510-519.	3.4	15
12	Assembly of Dynamic Supramolecular Polymers on a DNA Origami Platform. Angewandte Chemie, 2021, 133, 7690-7694.	2.0	0
13	Assembly of Dynamic Supramolecular Polymers on a DNA Origami Platform. Angewandte Chemie - International Edition, 2021, 60, 7612-7616.	13.8	7
14	Covalent Occlusion of the RORÎ ³ t Ligand Binding Pocket Allows Unambiguous Targeting of an Allosteric Site. ACS Medicinal Chemistry Letters, 2021, 12, 631-639.	2.8	7
15	Therapy Monitoring of EGFR-Positive Non–Small-Cell Lung Cancer Patients Using ddPCR Multiplex Assays. Journal of Molecular Diagnostics, 2021, 23, 495-505.	2.8	16
16	Dynamic Protease Activation on a Multimeric Synthetic Protein Scaffold via Adaptable DNAâ€Based Recruitment Domains. Angewandte Chemie, 2021, 133, 11362-11366.	2.0	2
17	Dynamic Protease Activation on a Multimeric Synthetic Protein Scaffold via Adaptable DNAâ€Based Recruitment Domains. Angewandte Chemie - International Edition, 2021, 60, 11262-11266.	13.8	5
18	Exploration of a 14-3-3 PPI Pocket by Covalent Fragments as Stabilizers. ACS Medicinal Chemistry Letters, 2021, 12, 976-982.	2.8	9

#	Article	IF	CITATIONS
19	Structure–Activity Relationship Studies of Trisubstituted Isoxazoles as Selective Allosteric Ligands for the Retinoic-Acid-Receptor-Related Orphan Receptor γt. Journal of Medicinal Chemistry, 2021, 64, 9238-9258.	6.4	9
20	Reversible Covalent Imine-Tethering for Selective Stabilization of 14-3-3 Hub Protein Interactions. Journal of the American Chemical Society, 2021, 143, 8454-8464.	13.7	28
21	An Exploration of Chemical Properties Required for Cooperative Stabilization of the 14-3-3 Interaction with NF-κB—Utilizing a Reversible Covalent Tethering Approach. Journal of Medicinal Chemistry, 2021, 64, 8423-8436.	6.4	15
22	The intramolecular allostery of GRB2 governing its interaction with SOS1 is modulated by phosphotyrosine ligands. Biochemical Journal, 2021, 478, 2793-2809.	3.7	15
23	Supramolecular Enhancement of a Natural 14–3–3 Protein Ligand. Journal of the American Chemical Society, 2021, 143, 13495-13500.	13.7	8
24	A Structural Study of the Cytoplasmic Chaperone Effect of 14-3-3 Proteins on Ataxin-1. Journal of Molecular Biology, 2021, 433, 167174.	4.2	7
25	Glucocorticoid receptor Thr524 phosphorylation by MINK1 induces interactions with 14-3-3 protein regulators. Journal of Biological Chemistry, 2021, 296, 100551.	3.4	9
26	Circulating biomarkers for monitoring therapy response and detection of disease progression in lung cancer patients. Cancer Treatment and Research Communications, 2021, 28, 100410.	1.7	17
27	Molecular basis for inhibition of adhesin-mediated bacterial-host interactions through a peptide-binding domain. Cell Reports, 2021, 37, 110002.	6.4	3
28	Fluorene benzothiadiazole co-oligomer based aqueous self-assembled nanoparticles. RSC Advances, 2020, 10, 444-450.	3.6	6
29	Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome. Nature Catalysis, 2020, 3, 295-306.	34.4	62
30	Ligand-Based Design of Allosteric Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) Inverse Agonists. Journal of Medicinal Chemistry, 2020, 63, 241-259.	6.4	30
31	Fluorescence Anisotropy-Based Tethering for Discovery of Protein–Protein Interaction Stabilizers. ACS Chemical Biology, 2020, 15, 3143-3148.	3.4	23
32	Structure-based evolution of a promiscuous inhibitor to a selective stabilizer of protein–protein interactions. Nature Communications, 2020, 11, 3954.	12.8	35
33	Fragmentâ€Based Stabilizers of Protein–Protein Interactions through Imineâ€Based Tethering. Angewandte Chemie - International Edition, 2020, 59, 21520-21524.	13.8	42
34	Fragmentâ€Based Stabilizers of Protein–Protein Interactions through Imineâ€Based Tethering. Angewandte Chemie, 2020, 132, 21704-21708.	2.0	6
35	Designed Asymmetric Protein Assembly on a Symmetric Scaffold. Angewandte Chemie, 2020, 132, 12211-12219.	2.0	2
36	Conjugated Protein Domains as Engineered Scaffold Proteins. Bioconjugate Chemistry, 2020, 31, 1596-1603.	3.6	11

#	Article	IF	CITATIONS
37	Delineation of the molecular determinants of the unique allosteric binding site of the orphan nuclear receptor RORγt. Journal of Biological Chemistry, 2020, 295, 9183-9191.	3.4	5
38	Modular bioengineered kinase sensorsviascaffold protein-mediated split-luciferase complementation. Chemical Science, 2020, 11, 5532-5536.	7.4	9
39	Selectivity via Cooperativity: Preferential Stabilization of the p65/14-3-3 Interaction with Semisynthetic Natural Products. Journal of the American Chemical Society, 2020, 142, 11772-11783.	13.7	41
40	Fragment-based Differential Targeting of PPI Stabilizer Interfaces. Journal of Medicinal Chemistry, 2020, 63, 6694-6707.	6.4	35
41	Elucidation of an Allosteric Mode of Action for a Thienopyrazole RORÎ ³ t Inverse Agonist. ChemMedChem, 2020, 15, 561-565.	3.2	11
42	Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs. Journal of the American Chemical Society, 2020, 142, 9106-9111.	13.7	44
43	Designed Asymmetric Protein Assembly on a Symmetric Scaffold. Angewandte Chemie - International Edition, 2020, 59, 12113-12121.	13.8	8
44	Nuclear receptor crosstalk — defining the mechanisms for therapeutic innovation. Nature Reviews Endocrinology, 2020, 16, 363-377.	9.6	113
45	Dynamic modulation of proximity-induced enzyme activity using supramolecular polymers. Chemical Communications, 2020, 56, 5747-5750.	4.1	3
46	Correction of the NSE concentration in hemolyzed serum samples improves its diagnostic accuracy in small-cell lung cancer. Oncotarget, 2020, 11, 2660-2668.	1.8	7
47	CHAPTER 4. Protein Modulation by Cucurbiturils. Monographs in Supramolecular Chemistry, 2020, , 104-123.	0.2	0
48	Multivalent Ultrasensitive Interfacing of Supramolecular 1D Nanoplatforms. Journal of the American Chemical Society, 2019, 141, 18030-18037.	13.7	18
49	Using the IPTG-Inducible Pgrac212 Promoter for Overexpression of Human Rhinovirus 3C Protease Fusions in the Cytoplasm of Bacillus subtilis Cells. Current Microbiology, 2019, 76, 1477-1486.	2.2	6
50	Allosteric small molecule modulators of nuclear receptors. Molecular and Cellular Endocrinology, 2019, 485, 20-34.	3.2	32
51	Cooperativity basis for small-molecule stabilization of protein–protein interactions. Chemical Science, 2019, 10, 2869-2874.	7.4	30
52	Site-Directed Fragment-Based Screening for the Discovery of Protein–Protein Interaction Stabilizers. Journal of the American Chemical Society, 2019, 141, 3524-3531.	13.7	79
53	Tetrazine— <i>trans</i> -Cyclooctene Chemistry Applied to Fabricate Self-Assembled Fluorescent and Radioactive Nanoparticles for <i>in Vivo</i> Dual Mode Imaging. Bioconjugate Chemistry, 2019, 30, 547-551.	3.6	9
54	A study on the effect of synthetic α-to-β ³ -amino acid mutations on the binding of phosphopeptides to 14-3-3 proteins. Chemical Communications, 2019, 55, 14809-14812.	4.1	7

#	Article	IF	CITATIONS
55	Chapter 17. Molecular Recognition of Proteins by Cucurbiturils. Monographs in Supramolecular Chemistry, 2019, , 464-482.	0.2	1
56	Dualâ€Input Regulation and Positional Control in Hybrid Oligonucleotide/Discotic Supramolecular Wires. Angewandte Chemie - International Edition, 2018, 57, 4976-4980.	13.8	25
57	Dualâ€Input Regulation and Positional Control in Hybrid Oligonucleotide/Discotic Supramolecular Wires. Angewandte Chemie, 2018, 130, 5070-5074.	2.0	8
58	Synthesis and Selfâ€Assembly of Bayâ€Substituted Perylene Diimide Geminiâ€Type Surfactants as Offâ€On Fluorescent Probes for Lipid Bilayers. Chemistry - A European Journal, 2018, 24, 7734-7741.	3.3	24
59	Inhibition of 14-3-3/Tau by Hybrid Small-Molecule Peptides Operating via Two Different Binding Modes. ACS Chemical Neuroscience, 2018, 9, 2639-2654.	3.5	29
60	A multi-gram-scale stereoselective synthesis of Z-endoxifen. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1352-1356.	2.2	4
61	Modulators of 14-3-3 Protein–Protein Interactions. Journal of Medicinal Chemistry, 2018, 61, 3755-3778.	6.4	202
62	A Thermodynamic Model for Multivalency in 14-3-3 Protein–Protein Interactions. Journal of the American Chemical Society, 2018, 140, 14498-14510.	13.7	54
63	Cucurbit[8]uril Reactivation of an Inactivated Caspaseâ€8 Mutant Reveals Differentiated Enzymatic Substrate Processing. ChemBioChem, 2018, 19, 2490-2494.	2.6	6
64	Mutually Exclusive Cellular Uptake of Combinatorial Supramolecular Copolymers. Chemistry - A European Journal, 2018, 24, 16445-16451.	3.3	10
65	Optimizing charge state distribution is a prerequisite for accurate protein biomarker quantification with LC-MS/MS, as illustrated by hepcidin measurement. Clinical Chemistry and Laboratory Medicine, 2018, 56, 1490-1497.	2.3	5
66	Rationally Designed Semisynthetic Natural Product Analogues for Stabilization of 14â€3â€3 Protein–Protein Interactions. Angewandte Chemie, 2018, 130, 13658-13662.	2.0	5
67	Rationally Designed Semisynthetic Natural Product Analogues for Stabilization of 14â€3â€3 Protein–Protein Interactions. Angewandte Chemie - International Edition, 2018, 57, 13470-13474.	13.8	41
68	Protease-Activatable Scaffold Proteins as Versatile Molecular Hubs in Synthetic Signaling Networks. ACS Synthetic Biology, 2018, 7, 2216-2225.	3.8	14
69	Switching from infliximab innovator to biosimilar in patients with inflammatory bowel disease: a 12â€month multicentre observational prospective cohort study. Alimentary Pharmacology and Therapeutics, 2018, 47, 356-363.	3.7	61
70	Hydrophobicity determines the fate of self-assembled fluorescent nanoparticles in cells. Chemical Communications, 2017, 53, 1626-1629.	4.1	7
71	Relationship between Sideâ€Chain Polarity and the Selfâ€Assembly Characteristics of Perylene Diimide Derivatives in Aqueous Solution. ChemistryOpen, 2017, 6, 266-272.	1.9	14
72	Structural interface between LRRK2 and 14-3-3 protein. Biochemical Journal, 2017, 474, 1273-1287.	3.7	54

#	Article	IF	CITATIONS
73	Designed Spiroketal Protein Modulation. Angewandte Chemie - International Edition, 2017, 56, 5480-5484.	13.8	11
74	Designed Spiroketal Protein Modulation. Angewandte Chemie, 2017, 129, 5572-5576.	2.0	1
75	A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14â€3â€3. Angewandte Chemie - International Edition, 2017, 56, 8998-9002.	13.8	81
76	Smallâ€Moleculeâ€Induced and Cooperative Enzyme Assembly on a 14â€3â€3 Scaffold. ChemBioChem, 2017, 1 331-335.	^{8,} 2.6	21
77	Incorporation of native antibodies and Fc-fusion proteins on DNA nanostructures via a modular conjugation strategy. Chemical Communications, 2017, 53, 7393-7396.	4.1	44
78	Real life dabigatran and metabolite concentrations, focused on inter-patient variability and assay differences in patients with atrial fibrillation. Clinical Chemistry and Laboratory Medicine, 2017, 55, 2002-2009.	2.3	7
79	Finite-size effects on bacterial population expansion under controlled flow conditions. Scientific Reports, 2017, 7, 43903.	3.3	4
80	Integrinâ€Targeting Fluorescent Proteins: Exploration of RGD Insertion Sites. ChemBioChem, 2017, 18, 441-443.	2.6	5
81	The Molecular Tweezer CLR01 Stabilizes a Disordered Protein–Protein Interface. Journal of the American Chemical Society, 2017, 139, 16256-16263.	13.7	56
82	Cucurbiturilâ€mediated immobilization of fluorescent proteins on supramolecular biomaterials. Journal of Polymer Science Part A, 2017, 55, 3607-3616.	2.3	9
83	Supramolecular Chemistry Targeting Proteins. Journal of the American Chemical Society, 2017, 139, 13960-13968.	13.7	169
84	Ligand Dependent Switch from RXR Homo- to RXR-NURR1 Heterodimerization. ACS Chemical Neuroscience, 2017, 8, 2065-2077.	3.5	19
85	Stabilization of protein-protein interactions in drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 925-940.	5.0	129
86	A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14â€3â€3. Angewandte Chemie, 2017, 129, 9126-9130.	2.0	26
87	Smallâ€molecule stabilization of the p53 – 14â€3â€3 proteinâ€protein interaction. FEBS Letters, 2017, 591, 2449-2457.	2.8	38
88	Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening. Biochemistry, 2017, 56, 3972-3982.	2.5	33
89	Bright Bioluminescent BRET Sensor Proteins for Measuring Intracellular Caspase Activity. ACS Sensors, 2017, 2, 729-734.	7.8	52
90	Batch and Flow Synthesis of Disulfides by Visibleâ€Lightâ€Induced TiO ₂ Photocatalysis. ChemSusChem, 2016, 9, 1781-1785.	6.8	88

#	Article	IF	CITATIONS
91	Supramolecular Control over Splitâ€Luciferase Complementation. Angewandte Chemie, 2016, 128, 9045-9049.	2.0	26
92	Rapid phenotype hemoglobin screening by high-resolution mass spectrometry on intact proteins. Clinica Chimica Acta, 2016, 460, 220-226.	1.1	9
93	Supramolecular Control over Split‣uciferase Complementation. Angewandte Chemie - International Edition, 2016, 55, 8899-8903.	13.8	58
94	Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1152-61.	7.1	121
95	Chiral Dihydrobenzofuran Acids Show Potent Retinoid X Receptor–Nuclear Receptor Related 1 Protein Dimer Activation. Journal of Medicinal Chemistry, 2016, 59, 1232-1238.	6.4	14
96	Therapeutic drug monitoring of infliximab: performance evaluation of three commercial ELISA kits. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1211-1219.	2.3	40
97	Identification of an allosteric binding site for RORÎ ³ t inhibition. Nature Communications, 2015, 6, 8833.	12.8	87
98	Supramolecular Protein Immobilization on Lipid Bilayers. Chemistry - A European Journal, 2015, 21, 18466-18473.	3.3	26
99	Self-Assembled Fluorescent Nanoparticles from π-Conjugated Small Molecules: En Route to Biological Applications. Macromolecular Rapid Communications, 2015, 36, 1306-1321.	3.9	46
100	Stabilizerâ€Guided Inhibition of Protein–Protein Interactions. Angewandte Chemie - International Edition, 2015, 54, 15720-15724.	13.8	56
101	Biophysical Characterization of Nucleophosmin Interactions with Human Immunodeficiency Virus Rev and Herpes Simplex Virus US11. PLoS ONE, 2015, 10, e0143634.	2.5	27
102	Molecular interference in antibody–antigen interaction studied with magnetic force immunoassay. New Biotechnology, 2015, 32, 450-457.	4.4	1
103	Metalâ€Free Photocatalytic Aerobic Oxidation of Thiols to Disulfides in Batch and Continuousâ€Flow. Advanced Synthesis and Catalysis, 2015, 357, 2180-2186.	4.3	164
104	Cucurbit[8]uril templated supramolecular ring structure formation and protein assembly modulation. Chemical Communications, 2015, 51, 3147-3150.	4.1	25
105	Estrogen Receptor Folding Modulates cSrc Kinase SH2 Interaction via a Helical Binding Mode. ACS Chemical Biology, 2015, 10, 2624-2632.	3.4	6
106	Carborane–β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. Journal of Materials Chemistry B, 2015, 3, 539-545.	5.8	47
107	Subtype-Specific Modulation of Estrogen Receptor–Coactivator Interaction by Phosphorylation. ACS Chemical Biology, 2015, 10, 475-484.	3.4	17
108	Single Particle Tracking Reveals that EGFR Signaling Activity Is Amplified in Clathrin-Coated Pits. PLoS ONE, 2015, 10, e0143162.	2.5	59

#	Article	IF	CITATIONS
109	Solution structure of a cucurbit[8]uril induced compact supramolecular protein dimer. Organic and Biomolecular Chemistry, 2014, 12, 9341-9344.	2.8	12
110	Determination of dabigatran, rivaroxaban and apixaban by ultraâ€performance liquid chromatography – tandem mass spectrometry (UPLCâ€MS/MS) and coagulation assays for therapy monitoring of novel direct oral anticoagulants. Journal of Thrombosis and Haemostasis, 2014, 12, 1636-1646.	3.8	146
111	Siteâ€Specific Protection and Dual Labeling of Human Epidermal Growth Factor (hEGF) for Targeting, Imaging, and Cargo Delivery. Chemistry - A European Journal, 2014, 20, 6019-6026.	3.3	16
112	A Naturalâ€Product Switch for a Dynamic Protein Interface. Angewandte Chemie - International Edition, 2014, 53, 6443-6448.	13.8	32
113	Evaluation of Fluorophores to Label SNAP-Tag Fused Proteins for Multicolor Single-Molecule Tracking Microscopy in Live Cells. Biophysical Journal, 2014, 107, 803-814.	0.5	92
114	<i>Bcrp1;Mdr1a/b;Mrp2</i> Combination Knockout Mice: Altered Disposition of the Dietary Carcinogen PhIP (2-Amino-1-Methyl-6-Phenylimidazo[4,5- <i>b</i>]Pyridine) and Its Genotoxic Metabolites. Molecular Pharmacology, 2014, 85, 520-530.	2.3	22
115	Modulators of Protein–Protein Interactions. Chemical Reviews, 2014, 114, 4695-4748.	47.7	407
116	Chapter 2. Use of synthetic biology techniques to site-selective introduce posttranslational modifications in proteins. Synthetic Biology, 2014, , 31-78.	0.2	1
117	Subcellular Fractionation and Localization Studies Reveal a Direct Interaction of the Fragile X Mental Retardation Protein (FMRP) with Nucleolin. PLoS ONE, 2014, 9, e91465.	2.5	51
118	Modular Columnar Supramolecular Polymers as Scaffolds for Biomedical Applications. Chemistry - A European Journal, 2013, 19, 10786-10793.	3.3	31
119	Structure–activity relationship studies of miniproteins targeting the androgen receptor–coactivator interaction. MedChemComm, 2013, 4, 187-192.	3.4	11
120	Dynamic and bio-orthogonal protein assembly along a supramolecular polymer. Chemical Science, 2013, 4, 2886.	7.4	36
121	Stabilization and Inhibition of Protein–Protein Interactions: The 14-3-3 Case Study. ACS Chemical Biology, 2013, 8, 27-35.	3.4	78
122	Proline Primed Helix Length as a Modulator of the Nuclear Receptor–Coactivator Interaction. Journal of the American Chemical Society, 2013, 135, 4364-4371.	13.7	42
123	Supramolecular chemical biology; bioactive synthetic self-assemblies. Organic and Biomolecular Chemistry, 2013, 11, 219-232.	2.8	98
124	Supramolecular control of cell adhesion via ferrocene–cucurbit[7]uril host–guest binding on gold surfaces. Chemical Communications, 2013, 49, 3679.	4.1	69
125	Immobilization of Ferrocene-Modified SNAP-Fusion Proteins. International Journal of Molecular Sciences, 2013, 14, 4066-4080.	4.1	19
126	SH3-mediated targeting of Wrch1/RhoU by multiple adaptor proteins. Biological Chemistry, 2013, 394, 421-432.	2.5	14

8

#	Article	IF	CITATIONS
127	Selfâ€Assembling Multivalency – Supramolecular Polymers Assembled from Monovalent Mannoseâ€Labelled Discotic Molecules. European Journal of Organic Chemistry, 2013, 2013, 3470-3476.	2.4	16
128	Selfâ€Assembled Fluorescent Organic Nanoparticles for Liveâ€Cell Imaging. Chemistry - A European Journal, 2013, 19, 16646-16650.	3.3	38
129	PNA-Induced Assembly of Fluorescent Proteins Using DNA as a Framework. Bioconjugate Chemistry, 2013, 24, 1378-1386.	3.6	15
130	Pharmaceutical implications of helix length control in helix-mediated protein–protein interactions. Future Medicinal Chemistry, 2013, 5, 2175-2183.	2.3	9
131	Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks. International Journal of Molecular Sciences, 2013, 14, 21189-21201.	4.1	8
132	Supramolecular Control of Enzyme Activity through Cucurbit[8]urilâ€Mediated Dimerization. Angewandte Chemie - International Edition, 2013, 52, 2915-2919.	13.8	113
133	Interaction of 14-3-3 proteins with the Estrogen Receptor Alpha F domain provides a drug target interface. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8894-8899.	7.1	114
134	Reversible and Oriented Immobilization of Ferrocene-Modified Proteins. Journal of the American Chemical Society, 2012, 134, 19199-19206.	13.7	83
135	Positional screening and NMR structure determination of side-chain-to-side-chain cyclized l² ³ -peptides. Organic and Biomolecular Chemistry, 2012, 10, 1365-1373.	2.8	5
136	Cucurbit[8]uril-mediated protein homotetramerization. Chemical Science, 2012, 3, 2679.	7.4	61
137	Estrogen Receptor α/β–cofactor motif interactions; interplay of tyrosine 537/488 phosphorylation and LXXLL motifs. Molecular BioSystems, 2012, 8, 3134.	2.9	4
138	A facile strategy to prevent trifluoroacetylation of N-terminal proline peptides. Tetrahedron Letters, 2012, 53, 4763-4765.	1.4	3
139	Targeting alpha-helix based protein interactions; nuclear receptors as a case study. Amino Acids, Peptides and Proteins, 2012, , 238-272.	0.7	0
140	Supramolecularly Oriented Immobilization of Proteins Using Cucurbit[8]uril. Langmuir, 2012, 28, 16364-16371.	3.5	40
141	Chemicalâ€Biological Exploration of the Limits of the Ras De―and Repalmitoylating Machinery. ChemBioChem, 2012, 13, 1017-1023.	2.6	22
142	Directed Supramolecular Surface Assembly of SNAPâ€ŧag Fusion Proteins. Chemistry - A European Journal, 2012, 18, 6788-6794.	3.3	38
143	Supramolecular Polymers as Dynamic Multicomponent Cellular Uptake Carriers. Journal of the American Chemical Society, 2012, 134, 8086-8089.	13.7	40
144	Strong supramolecular control over protein self-assembly using a polyamine decorated Î ² -cyclodextrin as synthetic recognition element. Journal of Materials Chemistry, 2011, 21, 18919.	6.7	17

LUC BRUNSVELD

#	Article	IF	CITATIONS
145	Design and Evaluation of Fragment-Like Estrogen Receptor Tetrahydroisoquinoline Ligands from a Scaffold-Detection Approach. Journal of Medicinal Chemistry, 2011, 54, 2005-2011.	6.4	12
146	Cucurbit[8]uril induced heterodimerization of methylviologen and naphthalene functionalized proteins. Chemical Communications, 2011, 47, 6798.	4.1	56
147	Pre- and Postfunctionalized Self-Assembled π-Conjugated Fluorescent Organic Nanoparticles for Dual Targeting. Journal of the American Chemical Society, 2011, 133, 17063-17071.	13.7	105
148	Proteinassembly along a supramolecular wire. Chemical Communications, 2011, 47, 310-312.	4.1	34
149	Analysis of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and Its Phase I and Phase II Metabolites in Mouse Urine Using LC–UV–MS–MS. Chromatographia, 2011, 74, 215-226.	1.3	4
150	An on-bead assay for the identification of non-natural peptides targeting the Androgen Receptor–cofactor interaction. Bioorganic and Medicinal Chemistry, 2011, 19, 306-311.	3.0	7
151	Semiconductive, Oneâ€Dimensional, Selfâ€Assembled Nanostructures Based on Oligopeptides with π onjugated Segments. Chemistry - A European Journal, 2011, 17, 4746-4749.	3.3	35
152	Investigational study of tamoxifen phase I metabolites using chromatographic and spectroscopic analytical techniques. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 518-526.	2.8	22
153	Strong and Reversible Monovalent Supramolecular Protein Immobilization. ChemBioChem, 2010, 11, 180-183.	2.6	85
154	Synthesis and Crystal Structure of a Phosphorylated Estrogen Receptor Ligand Binding Domain. ChemBioChem, 2010, 11, 2251-2254.	2.6	66
155	Solidâ€Phase Synthesis of Lipidated Ras Peptides Employing the Ellman Sulfonamide Linker. Chemistry - A European Journal, 2010, 16, 9585-9591.	3.3	13
156	Protein Dimerization Induced by Supramolecular Interactions with Cucurbit[8]uril. Angewandte Chemie - International Edition, 2010, 49, 895-898.	13.8	211
157	Synthesis of the Rheb and Kâ€Ras4B GTPases. Angewandte Chemie - International Edition, 2010, 49, 6090-6095.	13.8	73
158	Small-molecule inhibition of APT1 affects Ras localization and signaling. Nature Chemical Biology, 2010, 6, 449-456.	8.0	353
159	Lipidation of Peptides and Proteins. , 2010, , 531-585.		3
160	The Palmitoylation Machinery Is a Spatially Organizing System for Peripheral Membrane Proteins. Cell, 2010, 141, 458-471.	28.9	393
161	Combining supramolecular chemistry with biology. Chemical Society Reviews, 2010, 39, 2817.	38.1	336
162	Phage display selection of miniprotein binders of the Estrogen Receptor. Chemical Communications, 2010, 46, 8207.	4.1	26

LUC BRUNSVELD

#	Article	IF	CITATIONS
163	Modulation of Protein Dimerization by a Supramolecular Host–Guest System. Chemistry - A European Journal, 2009, 15, 8779-8790.	3.3	34
164	Mapping the Isoprenoid Binding Pocket of PDEδ by a Semisynthetic, Photoactivatable Nâ€Ras Lipoprotein. ChemBioChem, 2009, 10, 98-108.	2.6	15
165	A Supramolecular Polymer as a Selfâ€Assembling Polyvalent Scaffold. Angewandte Chemie - International Edition, 2009, 48, 2921-2924.	13.8	121
166	Bioactivity-guided mapping and navigation of chemical space. Nature Chemical Biology, 2009, 5, 585-592.	8.0	129
167	Perturbation of Estrogen Receptor α Localization with Synthetic Nona-Arginine LXXLL-Peptide Coactivator Binding Inhibitors. Chemistry and Biology, 2009, 16, 702-711.	6.0	31
168	Influence of the Lipidation Motif on the Partitioning and Association of N-Ras in Model Membrane Subdomains. Journal of the American Chemical Society, 2009, 131, 1557-1564.	13.7	108
169	Membrane binding of lipidated Ras peptides and proteins — The structural point of view. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 273-288.	2.6	84
170	Computational design, synthesis, and evaluation of miniproteins as androgen receptor coactivator mimics. Chemical Communications, 2009, , 5377.	4.1	19
171	Comparison of Design Strategies for Promotion of βâ€Peptide 14â€Helix Stability in Water. ChemBioChem, 2008, 9, 2254-2259.	2.6	43
172	Racemization-Free Synthesis of S-Alkylated Cysteines via Thiol-ene Reaction. Journal of Organic Chemistry, 2008, 73, 3646-3649.	3.2	63
173	Structures of RabGGTase–substrate/product complexes provide insights into the evolution of protein prenylation. EMBO Journal, 2008, 27, 2444-2456.	7.8	54
174	Stable helical peptoids via covalent side chain to side chain cyclization. Organic and Biomolecular Chemistry, 2008, 6, 2988.	2.8	28
175	A Synthetic Supramolecular Construct Modulating Protein Assembly in Cells. Angewandte Chemie - International Edition, 2007, 46, 1798-1802.	13.8	71
176	Synthesis of a fluorescent analogue of geranylgeranyl pyrophosphate and its use in a high-throughput fluorometric assay for Rab geranylgeranyltransferase. Nature Protocols, 2007, 2, 2704-2711.	12.0	23
177	Stable Helicalβ3-Peptides in Water via Covalent Bridging of Side Chains. Organic Letters, 2006, 8, 4199-4202.	4.6	18
178	Synthesis of palmitoylated Ras-peptides and -proteins. Methods, 2006, 40, 151-165.	3.8	19
179	Therapeutic intervention based on protein prenylation and associated modifications. Nature Chemical Biology, 2006, 2, 518-528.	8.0	176
180	Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO Journal, 2006, 25, 13-23.	7.8	103

#	Article	IF	CITATIONS
181	Lipidated Ras and Rab Peptides and Proteins—Synthesis, Structure, and Function. Angewandte Chemie - International Edition, 2006, 45, 6622-6646.	13.8	137
182	Synthesis of Functionalized Rab GTPases by a Combination of Solution- or Solid-Phase Lipopeptide Synthesis with Expressed Protein Ligation. Chemistry - A European Journal, 2005, 11, 2756-2772.	3.3	32
183	Chemical Biology of Protein Lipidation: Semi-Synthesis and Structure Elucidation of Prenylated RabGTPases. ChemInform, 2005, 36, no.	0.0	Ο
184	Application of Protein Semisynthesis for the Construction of Functionalized Posttranslationally Modified Rab GTPases. Methods in Enzymology, 2005, 403, 29-42.	1.0	7
185	Chemical biology of protein lipidation: semi-synthesis and structure elucidation of prenylated RabGTPases. Organic and Biomolecular Chemistry, 2005, 3, 1157.	2.8	18
186	Chiral Discotic Molecules: Expression and Amplification of Chirality. Topics in Stereochemistry, 2004, , 373-423.	2.0	16
187	Supramolecular Control over Donorâ^ Acceptor Photoinduced Charge Separation. Journal of the American Chemical Society, 2004, 126, 9630-9644.	13.7	58
188	Supramolecular polymers: from scientific curiosity to technological reality. Macromolecular Symposia, 2003, 201, 143-154.	0.7	81
189	Structure of Rab GDP-Dissociation Inhibitor in Complex with Prenylated YPT1 GTPase. Science, 2003, 302, 646-650.	12.6	193
190	Hierarchical formation of helical supramolecular polymers via stacking of hydrogen-bonded pairs in water. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4977-4982.	7.1	197
191	Supramolecular Polymers. Chemical Reviews, 2001, 101, 4071-4098.	47.7	2,805
192	Self-Assembly of Foldedm-Phenylene Ethynylene Oligomers into Helical Columns. Journal of the American Chemical Society, 2001, 123, 7978-7984.	13.7	244
193	Cooperativity in the Folding of Helicalm-Phenylene Ethynylene Oligomers Based upon the `Sergeants-and-Soldiers' Principle. Chemistry - A European Journal, 2001, 7, 4150-4154.	3.3	107
194	Chiral Amplification in Columns of Self-AssembledN,N′,N″-Tris((S)-3,7-dimethyloctyl)benzene-1,3,5-tricarboxamide in Dilute Solution. Chemistry Letters, 2000, 29, 292-293.	1.3	152
195	Twist Sense Bias Induced by Chiral Side Chains in Helically Folded Oligomers. Angewandte Chemie - International Edition, 2000, 39, 228-230.	13.8	223
196	Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature, 2000, 407, 167-170.	27.8	647
197	Supramolecular Polymers. MRS Bulletin, 2000, 25, 49-53.	3.5	86
198	Chirality amplification in dynamic helical columns in water. Chemical Communications, 2000, , 2305-2306.	4.1	78

LUC BRUNSVELD

#	Article	IF	CITATIONS
199	Helical Transition and Growth of Supramolecular Assemblies of Chiral Discotic Molecules. Langmuir, 2000, 16, 10076-10083.	3.5	66
200	Hierarchical Growth of Chiral Self-Assembled Structures in Protic Mediaâ€. Journal of the American Chemical Society, 2000, 122, 6175-6182.	13.7	215
201	Conformational Ordering of Apolar, Chiralm-Phenylene Ethynylene Oligomers. Organic Letters, 2000, 2, 1525-1528.	4.6	65
202	The Influence of Lithium Perchlorate on Discotic Liquid Crystals and the Ion Conduction of their Mixtures. Molecular Crystals and Liquid Crystals, 1999, 331, 449-456.	0.3	15
203	Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science, 1997, 278, 1601-1604.	12.6	2,152
204	Protein scaffolds and higher-order complexes in synthetic biology. Synthetic Biology, 0, , 65-96.	0.2	1