Jakub Abramson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3231411/publications.pdf Version: 2024-02-01

LAKUR ARDAMSON

#	Article	IF	CITATIONS
1	The acetyltransferase KAT7 is required for thymic epithelial cell expansion, expression of AIRE target genes, and thymic tolerance Science Immunology, 2022, 7, eabb6032.	11.9	4
2	Extrathymic expression of Aire controls the induction of effective TH17 cell-mediated immune response to Candida albicans. Nature Immunology, 2022, 23, 1098-1108.	14.5	29
3	Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation. Journal of Experimental Medicine, 2021, 218, .	8.5	18
4	Immunological Tolerance—T Cells. , 2020, , 65-90.		1
5	Thymic epithelial cell heterogeneity: TEC by TEC. Nature Reviews Immunology, 2020, 20, 239-253.	22.7	109
6	Quantitative Proteomics Identifies TCF1 as a Negative Regulator of Foxp3 Expression in Conventional T Cells. IScience, 2020, 23, 101127.	4.1	7
7	IL18 signaling promotes homing of mature Tregs into the thymus. ELife, 2020, 9, .	6.0	28
8	Tuft cells: From the mucosa to the thymus. Immunology Letters, 2019, 210, 1-9.	2.5	40
9	Rbpj expression in regulatory T cells is critical for restraining TH2 responses. Nature Communications, 2019, 10, 1621.	12.8	41
10	Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature, 2018, 559, 622-626.	27.8	235
11	AIRE. , 2018, , 255-261.		0
12	Thymic Epithelial Cells. Annual Review of Immunology, 2017, 35, 85-118.	21.8	282
13	Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nature Immunology, 2017, 18, 161-172.	14.5	81
14	Thymospheres Are Formed by Mesenchymal Cells with the Potential to Generate Adipocytes, but Not Epithelial Cells. Cell Reports, 2017, 21, 934-942.	6.4	20
15	Quantitative analysis of protein-protein interactions and post-translational modifications in rare immune populations. Nature Communications, 2017, 8, 1524.	12.8	26
16	AIRE. , 2017, , 1-7.		0
17	Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biology, 2016, 17, 219.	8.8	67
18	Requirement of Stat3 Signaling in the Postnatal Development of Thymic Medullary Epithelial Cells. PLoS Genetics, 2016, 12, e1005776.	3.5	33

JAKUB ABRAMSON

#	Article	IF	CITATIONS
19	HDAC3 Is a Master Regulator of mTEC Development. Cell Reports, 2016, 15, 651-665.	6.4	27
20	Autoimmune regulator and selfâ€ŧolerance – molecular and clinical aspects. Immunological Reviews, 2016, 271, 127-140.	6.0	88
21	AIRE: From promiscuous molecular partnerships to promiscuous gene expression. European Journal of Immunology, 2016, 46, 22-33.	2.9	57
22	The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance. Nature Immunology, 2015, 16, 737-745.	14.5	85
23	Treg Cell Differentiation: From Thymus to Peripheral Tissue. Progress in Molecular Biology and Translational Science, 2015, 136, 175-205.	1.7	46
24	Dominant Mutations in the Autoimmune Regulator AIRE Are Associated with Common Organ-Specific Autoimmune Diseases. Immunity, 2015, 42, 1185-1196.	14.3	246
25	Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 535-540.	7.1	202
26	Aire's Partners in the Molecular Control of Immunological Tolerance. Cell, 2010, 140, 123-135.	28.9	309
27	Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15878-15883.	7.1	155
28	Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. Journal of Experimental Medicine, 2007, 204, 2521-2528.	8.5	330
29	Regulation of the mast cell response to the type 1 Fc? receptor. Immunological Reviews, 2007, 217, 231-254.	6.0	76
30	Selective inhibition of the FcɛRI-induced de novo synthesis of mediators by an inhibitory receptor. EMBO Journal, 2006, 25, 323-334.	7.8	23
31	Stable knockdown of MAFA expression in RBL-2H3 cells by siRNA retrovirus-delivery system. Immunology Letters, 2004, 92, 179-184.	2.5	2
32	Dok protein family members are involved in signaling mediated by the type 1 Fcε receptor. European Journal of Immunology, 2003, 33, 85-91.	2.9	37
33	An unusual inhibitory receptor—the mast cell function-associated antigen (MAFA). Molecular Immunology, 2002, 38, 1307-1313.	2.2	40
34	Clustering the mast cell function-associated antigen (MAFA) leads to tyrosine phosphorylation of p62Dok and SHIP and affects RBL-2H3 cell cycle. Immunology Letters, 2002, 82, 23-28.	2.5	34