Arie Altman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3231345/publications.pdf

Version: 2024-02-01

72 papers

11,039 citations

38 h-index 97045 71 g-index

73 all docs

73 docs citations

73 times ranked

12674 citing authors

#	Article	IF	Citations
1	Ornamental plant domestication by aesthetics-driven human cultural niche construction. Trends in Plant Science, 2022, 27, 124-138.	4.3	12
2	Promoting Ethically Responsible Use of Agricultural Biotechnology. Trends in Plant Science, 2021, 26, 546-559.	4.3	25
3	Understanding Agriculture within the Frameworks of Cumulative Cultural Evolution, Gene-Culture Co-Evolution, and Cultural Niche Construction. Human Ecology, 2019, 47, 483-497.	0.7	40
4	Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence. Trends in Biotechnology, 2019, 37, 1217-1235.	4.9	134
5	Plant tissue culture and biotechnology: perspectives in the history and prospects of the International Association of Plant Biotechnology (IAPB). In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 590-594.	0.9	6
6	Current challenges and future perspectives of plant and agricultural biotechnology. Trends in Biotechnology, 2015, 33, 337-342.	4.9	90
7	Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology, 2014, 34, 1181-1198.	1.4	144
8	Tree genetic engineering and applications to sustainable forestry and biomass production. Trends in Biotechnology, 2011, 29, 9-17.	4.9	145
9	Linking the Salt Transcriptome with Physiological Responses of a Salt-Resistant <i>Populus</i> species as a Strategy to Identify Genes Important for Stress Acclimation. Plant Physiology, 2010, 154, 1697-1709.	2.3	120
10	EPR Studies of O ₂ ^{•â^²} , OH, and ¹ O ₂ Scavenging and Prevention of Glutathione Depletion in Fibroblast Cells by Cyanidin-3-rhamnoglucoside Isolated from Fig (Ficus carica L.) Fruits. Journal of Agricultural and Food Chemistry, 2010, 58, 7158-7165.	2.4	17
11	Protection of Fibroblasts (NIH-3T3) against Oxidative Damage by Cyanidin-3-rhamnoglucoside Isolated from Fig Fruits (<i>Ficus carica</i> L.). Journal of Agricultural and Food Chemistry, 2010, 58, 6660-6665.	2.4	30
12	SP1 Protein-Based Nanostructures and Arrays. Nano Letters, 2008, 8, 473-477.	4.5	70
13	Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica, a Poplar Growing in Arid Regions. Plant Physiology, 2007, 143, 876-892.	2.3	338
14	Multiple display of catalytic modules on a protein scaffold: Nano-fabrication of enzyme particles. Journal of Biotechnology, 2007, 131, 433-439.	1.9	37
15	SP1 as a Novel Scaffold Building Block for Self-Assembly Nanofabrication of Submicron Enzymatic Structures. Nano Letters, 2007, 7, 1575-1579.	4.5	37
16	Antioxidant Activities and Anthocyanin Content of Fresh Fruits of Common Fig (Ficus carical.). Journal of Agricultural and Food Chemistry, 2006, 54, 7717-7723.	2.4	441
17	Aspen SP1, an exceptional thermal, protease and detergent-resistant self-assembled nano-particle. Biotechnology and Bioengineering, 2006, 95, 161-168.	1.7	36
18	Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 2005, 16, 123-132.	3.3	1,299

#	Article	IF	Citations
19	Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biology, 2005, 6, R101.	13.9	208
20	The Structural Basis of the Thermostability of SP1, a Novel Plant (Populus tremula) Boiling Stable Protein. Journal of Biological Chemistry, 2004, 279, 51516-51523.	1.6	73
21	Cloning and characterization of the tomato karyopherin alpha1 gene promoter. Development Growth and Differentiation, 2004, 46, 515-522.	0.6	3
22	Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9, 244-252.	4.3	2,358
23	From plant tissue culture to biotechnology: Scientific revolutions, abiotic stress tolerance, and forestry. In Vitro Cellular and Developmental Biology - Plant, 2003, 39, 75-84.	0.9	43
24	Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218, 1-14.	1.6	2,937
25	Crystallization and preliminary X-ray crystallographic analysis of SP1, a novel chaperone-like protein. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 512-514.	2.5	13
26	Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa. Canadian Journal of Forest Research, 2003, 33, 967-975.	0.8	120
27	Characterization of SP1, a Stress-Responsive, Boiling-Soluble, Homo-Oligomeric Protein from Aspen. Plant Physiology, 2002, 130, 865-875.	2.3	85
28	Xylem abscisic acid accelerates leaf abscission by modulating polyamine and ethylene synthesis in water-stressed intact poplar. Trees - Structure and Function, 2002, 16, 16-22.	0.9	23
29	Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees - Structure and Function, 2001, 15, 186-194.	0.9	164
30	Genotypic difference in salinity and water stress tolerance of fresh market tomato cultivars. Plant Science, 2000, 152, 59-65.	1.7	112
31	Arabidopsis thaliana endo-1,4-\$-ß-glucanase (cell) Promoter Mediates uidA Expression in Elongating Tissues of Aspen (Populus tremula). Journal of Plant Physiology, 2000, 156, 118-120.	1.6	19
32	rol. Trees - Structure and Function, 1999, 14, 49.	0.9	14
33	Forest-tree biotechnology: genetic transformation and its application to future forests. Trends in Biotechnology, 1998, 16, 439-446.	4.9	95
34	INHIBITION OF POLYAMINE BIOSYNTHESIS BY L-CANAVANINE AND ITS EFFECT ON MERISTEMATIC ACTIVITY, GROWTH, AND DEVELOPMENT OF ZEA MAYS ROOTS. Israel Journal of Plant Sciences, 1997, 45, 23-30.	0.3	4
35	Photosynthetic response of Populus euphratica to salt stress. Forest Ecology and Management, 1997, 93, 55-61.	1.4	93
36	Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum, 1997, 99, 153-159.	2.6	115

#	Article	IF	Citations
37	Transformation and regeneration of transgenic aspen plants via shoot formation from stem explants. Physiologia Plantarum, 1997, 99, 554-561.	2.6	32
38	Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Molecular Biology Reporter, 1997, 15, 219-235.	1.0	75
39	Agrobacterium rhizogenes-mediated DNA transfer inPinus halepensis Mill Plant Cell Reports, 1996, 16, 26-31.	2.8	62
40	Highly efficient transformation and regeneration of aspen plants through shoot-bud formation in root culture. Plant Cell Reports, 1996, 15, 566-571.	2.8	4
41	Tomato yellow leaf curl virus DNA in callus cultures derived from infected tomato leaves. Plant Cell, Tissue and Organ Culture, 1994, 39, 37-42.	1.2	6
42	In vitro propagation and germplasm cold-storage of fertile and male-sterile Allium trifoliatum subsp. hirsutum. Genetic Resources and Crop Evolution, 1994, 41, 87-98.	0.8	7
43	Interactions of polyamines and nitrogen nutrition in plants. Physiologia Plantarum, 1993, 89, 653-658.	2.6	56
44	Interactions of polyamines and nitrogen nutrition in plants. Physiologia Plantarum, 1993, 89, 653-658.	2.6	44
45	In vitro Development of Mature Fagus sylvatica L. buds II. Seasonal Changes in The Response to Plant Growth Regulators. Journal of Plant Physiology, 1991, 138, 136-141.	1.6	16
46	In vitro Development of Mature Fagus Sylvatica L. Buds. I. The Effect of Medium and Plant Growth Regulators on Bud Growth and Protein Profiles. Journal of Plant Physiology, 1991, 138, 596-601.	1.6	17
47	Regulation of somatic embryogenesis in celery cell suspensions. Plant Cell, Tissue and Organ Culture, 1989, 18, 181-189.	1.2	62
48	The effect of salt stress on polyamine biosynthesis and content in mung bean plants and in halophytes. Physiologia Plantarum, 1989, 76, 295-302.	2.6	69
49	Liposome-mediated introduction of the chloramphenicol acetyl transferase (CAT) gene and its expression in tobacco protoplasts. Plant Molecular Biology, 1988, 10, 185-191.	2.0	14
50	Changes in the integrity of large unilamellar vesicles due to their interaction with tobacco cell suspensions. Plant Cell Reports, 1988, 7, 341-343.	2.8	0
51	Fusion of germinating watermelon pollen tubes with liposomes. Plant Science, 1988, 55, 69-75.	1.7	12
52	Interactions between myo-inositol and cytokinins: Their basipetal transport and effect on peach roots. Physiologia Plantarum, 1987, 69, 633-638.	2.6	4
53	Involvement of Divalent Cations in Maintaining Cell Membrane Integrity in Stressed Apple Fruit Tissues. Journal of Plant Physiology, 1986, 125, 47-60.	1.6	22
54	Presence and Identification of Polyamines in Xylem and Phloem Exudates of Plants. Plant Physiology, 1986, 82, 1154-1157.	2.3	110

#	Article	IF	CITATIONS
55	Polyamines and Root Formation in Mung Bean Hypocotyl Cuttings. Plant Physiology, 1985, 79, 80-83.	2.3	46
56	Transcriptional activity of isolated maize chloroplasts. Archives of Biochemistry and Biophysics, 1984, 235, 26-33.	1.4	22
57	Arginine and Ornithine Decarboxylases, the Polyamine Biosynthetic Enzymes of Mung Bean Seedlings. Plant Physiology, 1982, 69, 876-879.	2.3	54
58	Polyamines and Root Formation in Mung Bean Hypocotyl Cuttings. Plant Physiology, 1982, 70, 844-848.	2.3	90
59	Growth and Metabolic Activity of Lemon Juice Vesicle Explants in Vitro. Plant Physiology, 1982, 69, 1-6.	2.3	28
60	Retardation of radish leaf senescence by polyamines. Physiologia Plantarum, 1982, 54, 189-193.	2.6	80
61	Polyamines and wounded storage tissues - Inhibition of RNase activity and solute leakage. Physiologia Plantarum, 1982, 54, 194-198.	2.6	49
62	Growth and development of Citrus pistils and fruit explants in vitro. Physiologia Plantarum, 1981, 53, 295-300.	2.6	16
63	Role of Ethylene in Abscisic Acid-induced Callus Formation in Citrus Bud Cultures. Plant Physiology, 1979, 63, 280-282.	2.3	40
64	Polyamines, ribonuclease and the improvement of oat leaf protoplasts. Plant Science Letters, 1978, 11, 69-79.	1.9	87
65	Dual Mechanisms in Polyamine-mediated Control of Ribonuclease Activity in Oat Leaf Protoplasts. Plant Physiology, 1978, 62, 158-160.	2.3	76
66	Differential Effects of Sucrose, Abscisic Acid, and Benzyladenine on Shoot Growth and Callus Formation in the Abscission Zone of Excised Citrus Buds. Plant Physiology, 1977, 59, 1161-1164.	2.3	16
67	Stabilization of Oat Leaf Protoplasts through Polyamine-mediated Inhibition of Senescence. Plant Physiology, 1977, 60, 570-574.	2.3	173
68	Characteristics of Root-to-Shoot Transport of Cytokinin 6-Benzylaminopurine in Intact Seedlings of Citrus aurantium. Physiologia Plantarum, 1977, 39, 225-232.	2.6	23
69	Comparative Basipetal Transport of 6-Benzylaminopurine-8-14C, Gibberellin A3-3H, IAA-2-14C, and Sucrose-14C in the Root of Intact Citrus aurantium Seedlings. Physiologia Plantarum, 1977, 39, 233-235.	2.6	3
70	Growth and Dormancy Cycles in Citrus Bud Cultures and Their Hormonal Control. Physiologia Plantarum, 1974, 30, 240-245.	2.6	61
71	Interrelationship of Abscisic Acid and Gibberellic Acid in the Promotion of Callus Formation in the Abscission Zone of Citrus Bud Cultures. Physiologia Plantarum, 1974, 32, 55-61.	2.6	15
72	Promotion of Callus Formation by Abscisic Acid in Citrus Bud Cultures. Plant Physiology, 1971, 47, 844-846.	2.3	38