
Arti Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3230989/publications.pdf Version: 2024-02-01

Δρτι ςμιικι λ

#	Article	IF	CITATIONS
1	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	28.9	691
2	Exosomal miR-16-5p as a target for malignant mesothelioma. Scientific Reports, 2019, 9, 11688.	3.3	40
3	Peroxiredoxins and Beyond; Redox Systems Regulating Lung Physiology and Disease. Antioxidants and Redox Signaling, 2019, 31, 1070-1091.	5.4	24
4	Mouse serum exosomal proteomic signature in response to asbestos exposure. Journal of Cellular Biochemistry, 2018, 119, 6266-6273.	2.6	11
5	Exosomes from asbestosâ€exposed cells modulate gene expression in mesothelial cells. FASEB Journal, 2018, 32, 4328-4342.	0.5	21
6	Extracellular signal regulated kinase 5 and inflammasome in progression of mesothelioma. Oncotarget, 2018, 9, 293-305.	1.8	12
7	Asbestos-Induced Mesothelial to Fibroblastic Transition Is Modulated by the Inflammasome. American Journal of Pathology, 2017, 187, 665-678.	3.8	34
8	Actin polymerization plays a significant role in asbestos-induced inflammasome activation in mesothelial cells in vitro. Histochemistry and Cell Biology, 2017, 147, 595-604.	1.7	9
9	Asbestos-Induced Inflammation in Malignant Mesothelioma and Other Lung Diseases. Current Cancer Research, 2017, , 161-174.	0.2	0
10	Inflammation-Related IL1β/IL1R Signaling Promotes the Development of Asbestos-Induced Malignant Mesothelioma. Cancer Prevention Research, 2016, 9, 406-414.	1.5	68
11	Differential Susceptibility of Human Pleural and Peritoneal Mesothelial Cells to Asbestos Exposure. Journal of Cellular Biochemistry, 2015, 116, 1540-1552.	2.6	29
12	Exosomes: Potential in Cancer Diagnosis and Therapy. Medicines (Basel, Switzerland), 2015, 2, 310-327.	1.4	80
13	Disabling Mitochondrial Peroxide Metabolism via Combinatorial Targeting of Peroxiredoxin 3 as an Effective Therapeutic Approach for Malignant Mesothelioma. PLoS ONE, 2015, 10, e0127310.	2.5	26
14	Inflammasome Modulation by Chemotherapeutics in Malignant Mesothelioma. PLoS ONE, 2015, 10, e0145404.	2.5	37
15	Exploratory use of docetaxel loaded acid-prepared mesoporous spheres for the treatment of malignant melanoma. Cancer Nanotechnology, 2015, 6, 1.	3.7	1
16	Indications for distinct pathogenic mechanisms of asbestos and silica through gene expression profiling of the response of lung epithelial cells. Human Molecular Genetics, 2015, 24, 1374-1389.	2.9	19
17	Malignant Mesothelioma: Development to Therapy. Journal of Cellular Biochemistry, 2014, 115, 1-7.	2.6	20
18	Asbestos modulates thioredoxin-thioredoxin interacting protein interaction to regulate inflammasome activation. Particle and Fibre Toxicology, 2014, 11, 24.	6.2	37

Arti Shukla

#	Article	IF	CITATIONS
19	Curcumin: A Double Hit on Malignant Mesothelioma. Cancer Prevention Research, 2014, 7, 330-340.	1.5	46
20	CREB-Induced Inflammation Is Important for Malignant Mesothelioma Growth. American Journal of Pathology, 2014, 184, 2816-2827.	3.8	29
21	Extracellular Signal-Regulated Kinase 5 and Cyclic AMP Response Element Binding Protein Are Novel Pathways Inhibited by Vandetanib (ZD6474) and Doxorubicin in Mesotheliomas. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 595-603.	2.9	10
22	Asbestos-Induced Oxidative Stress in Lung Pathogenesis. , 2014, , 1587-1610.		2
23	New Insights into Understanding the Mechanisms, Pathogenesis, and Management of Malignant Mesotheliomas. American Journal of Pathology, 2013, 182, 1065-1077.	3.8	91
24	Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Particle and Fibre Toxicology, 2013, 10, 39.	6.2	102
25	Extracellular Signal–Regulated Kinase 5: A Potential Therapeutic Target for Malignant Mesotheliomas. Clinical Cancer Research, 2013, 19, 2071-2083.	7.0	35
26	A Multifunctional Mesothelin Antibody-tagged Microparticle Targets Human Mesotheliomas. Journal of Histochemistry and Cytochemistry, 2012, 60, 658-674.	2.5	5
27	Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells. Particle and Fibre Toxicology, 2012, 9, 6.	6.2	57
28	ERK2 is essential for the growth of human epithelioid malignant mesotheliomas. International Journal of Cancer, 2011, 129, 1075-1086.	5.1	38
29	An Extracellular Signal–Regulated Kinase 2 Survival Pathway Mediates Resistance of Human Mesothelioma Cells to Asbestos-Induced Injury. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 906-914.	2.9	14
30	Mechanisms of oxidative stress and alterations in gene expression by Libby six-mix in human mesothelial cells. Particle and Fibre Toxicology, 2010, 7, 26.	6.2	24
31	Assessing nanotoxicity in cells <i>in vitro</i> . Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 219-231.	6.1	162
32	Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model. Annals of the New York Academy of Sciences, 2010, 1203, 7-14.	3.8	74
33	Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to doxorubicin. Molecular Cancer, 2010, 9, 314.	19.2	64
34	Utilization of Gene Profiling and Proteomics to Determine Mineral Pathogenicity in a Human Mesothelial Cell Line (LP9/TERT-1). Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 423-436.	2.3	30
35	Alterations in Gene Expression in Human Mesothelial Cells Correlate with Mineral Pathogenicity. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 114-123.	2.9	55
36	A Protein Kinase Cδ-Dependent Protein Kinase D Pathway Modulates ERK1/2 and JNK1/2 Phosphorylation and Bim-Associated Apoptosis by Asbestos. American Journal of Pathology, 2009, 174, 449-459.	3.8	26

Arti Shukla

#	Article	IF	CITATIONS
37	Activated cAMP Response Element Binding Protein Is Overexpressed in Human Mesotheliomas and Inhibits Apoptosis. American Journal of Pathology, 2009, 175, 2197-2206.	3.8	43
38	Asbestos-mediated CREB phosphorylation is regulated by protein kinase A and extracellular signal-regulated kinases 1/2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1361-L1369.	2.9	32
39	Asbestos-Induced Peribronchiolar Cell Proliferation and Cytokine Production Are Attenuated in Lungs of Protein Kinase C-δ Knockout Mice. American Journal of Pathology, 2007, 170, 140-151.	3.8	50
40	Highlight Commentary on "Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particlesâ€â~†. Free Radical Biology and Medicine, 2007, 43, 504-505.	2.9	5
41	Oxidant-Mediated cAMP Response Element Binding Protein Activation. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 7-14.	2.9	29
42	Transcriptional upâ€regulation of MMPs 12 and 13 by asbestos occurs via a PKCÎ′â€dependent pathway in murine lung. FASEB Journal, 2006, 20, 997-999.	0.5	41
43	Matrix metalloproteinases regulation by asbestos in murine lung:Role of protein kinase C delta. FASEB Journal, 2006, 20, A226.	0.5	0
44	The γ-Glutamylcysteine Synthetase and Glutathione Regulate Asbestos-induced Expression of Activator Protein-1 Family Members and Activity. Cancer Research, 2004, 64, 7780-7786.	0.9	26
45	Dose-Response Relationships in Expression of Biomarkers of Cell Proliferation in In Vitro Assays and Inhalation Experiments. Nonlinearity in Biology, Toxicology, Medicine, 2004, 2, 154014204904644.	0.4	12
46	Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radical Biology and Medicine, 2003, 34, 1117-1129.	2.9	249
47	Cell signaling and transcription factor activation by asbestos in lung injury and disease. International Journal of Biochemistry and Cell Biology, 2003, 35, 1198-1209.	2.8	73
48	Asbestos induces mitochondrial DNA damage and dysfunction linked to the development of apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1018-L1025.	2.9	79
49	Asbestos-Induced Apoptosis Is Protein Kinase Cδ-Dependent. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 198-205.	2.9	58
50	Title is missing!. Molecular and Cellular Biochemistry, 2002, 234/235, 111-118.	3.1	29
51	Role of Mitogen-Activated Protein Kinases, Early Response Protooncogenes, and Activator Protein-1 in Cell Signaling by Asbestos. Inhalation Toxicology, 2000, 12, 307-316.	1.6	12