List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3230649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The NPXXY Motif Regulates β-Arrestin Recruitment by the CB1 Cannabinoid Receptor. Cannabis and Cannabinoid Research, 2023, 8, 731-748.	2.9	4
2	Contribution of G Protein-Coupled Receptor 55 to Periaqueductal Gray-Mediated Antinociception in the Inflammatory Pain. Cannabis and Cannabinoid Research, 2022, 7, 274-278.	2.9	2
3	Cannabinoid Cancer Biology and Prevention. Journal of the National Cancer Institute Monographs, 2021, 2021, 99-106.	2.1	11
4	Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy. Journal of Medicinal Chemistry, 2021, 64, 8104-8126.	6.4	18
5	GPR55 in the brain and chronic neuropathic pain. Behavioural Brain Research, 2021, 406, 113248.	2.2	14
6	CB1 Cannabinoid Receptor Signaling and Biased Signaling. Molecules, 2021, 26, 5413.	3.8	50
7	Acute cocaine administration alters permeability of blood-brain barrier in freely-moving rats— Evidence using miniaturized fluorescence microscopy. Drug and Alcohol Dependence, 2020, 206, 107637.	3.2	16
8	Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. Journal of Medicinal Chemistry, 2020, 63, 542-568.	6.4	40
9	Therapeutic Exploitation of GPR18: Beyond the Cannabinoids?. Journal of Medicinal Chemistry, 2020, 63, 14216-14227.	6.4	31
10	GPR55-mediated effects on brain microvascular endothelial cells and the blood–brain barrier. Neuroscience, 2019, 414, 88-98.	2.3	20
11	Design, Synthesis, and Pharmacological Evaluation of Novel Quinolone Aryl Sulfonamide Derivatives as Potent GPR55 Antagonists. Proceedings (mdpi), 2019, 22, .	0.2	0
12	Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP3-Evoked Ca2+ Signals through Sigma-1 Receptors. Cell Reports, 2019, 26, 330-337.e4.	6.4	45
13	Cannabinoid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
14	Effects of Platelet-Activating Factor on Brain Microvascular Endothelial Cells. Neuroscience, 2018, 377, 105-113.	2.3	31
15	Effects of VPAC1 activation in nucleus ambiguus neurons. Brain Research, 2017, 1657, 297-303.	2.2	4
16	Design, synthesis and biological evaluation of GPR55 agonists. Bioorganic and Medicinal Chemistry, 2017, 25, 4355-4367.	3.0	10
17	HIV Tat excites D1 receptor-like expressing neurons from rat nucleus accumbens. Drug and Alcohol Dependence, 2017, 178, 7-14.	3.2	9
18	Identification of Crucial Amino Acid Residues Involved in Agonist Signaling at the GPR55 Receptor. Biochemistry, 2017, 56, 473-486.	2.5	21

#	Article	IF	CITATIONS
19	Mechanisms of modulation of brain microvascular endothelial cells function by thrombin. Brain Research, 2017, 1657, 167-175.	2.2	44
20	Structure-activity relationships of benzothiazole GPR35 antagonists. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 612-615.	2.2	4
21	Modulation of cardiac vagal tone by bradykinin acting on nucleus ambiguus. Neuroscience, 2017, 365, 23-32.	2.3	13
22	Novel analogs of PSNCBAM-1 as allosteric modulators of cannabinoid CB1 receptor. Bioorganic and Medicinal Chemistry, 2017, 25, 6427-6434.	3.0	14
23	N-arachidonoyl glycine, another endogenous agonist of GPR55. Biochemical and Biophysical Research Communications, 2017, 490, 1389-1393.	2.1	23
24	Understanding the endocannabinoid system as a modulator of the trigeminal pain response to concussion. Concussion, 2017, 2, CNC49.	1.0	6
25	Protocols and Good Operating Practices in the Study of Cannabinoid Receptors. Methods in Enzymology, 2017, 593, 23-42.	1.0	4
26	CB 1 and CB 2 Receptor Pharmacology. Advances in Pharmacology, 2017, 80, 169-206.	2.0	229
27	CB ₁ Allosteric Modulator Org27569 Is an Antagonist/Inverse Agonist of ERK1/2 Signaling. Cannabis and Cannabinoid Research, 2016, 1, 272-280.	2.9	18
28	Allosteric Modulators: A Side Door. Journal of Medicinal Chemistry, 2016, 59, 42-43.	6.4	13
29	Design, synthesis, and analysis of antagonists of GPR55: Piperidine-substituted 1,3,4-oxadiazol-2-ones. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1827-1830.	2.2	6
30	Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors. Biochemical Journal, 2016, 473, 1-5.	3.7	39
31	G proteinâ€coupled estrogen receptorâ€mediated effects on cytosolic calcium and nanomechanics in brain microvascular endothelial cells. Journal of Neurochemistry, 2015, 133, 629-639.	3.9	28
32	Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor–inositol 1,4,5-trisphosphate–transient receptor potential canonical channel pathways. Cell Calcium, 2015, 58, 196-207.	2.4	19
33	The Lysophosphatidylinositol Receptor GPR55 Modulates Pain Perception in the Periaqueductal Gray. Molecular Pharmacology, 2015, 88, 265-272.	2.3	48
34	Pharmacologic Inhibition of 5-Lipoxygenase Improves Memory, Rescues Synaptic Dysfunction, and Ameliorates Tau Pathology in a Transgenic Model of Tauopathy. Biological Psychiatry, 2015, 78, 693-701.	1.3	41
35	Allosteric Modulation of a Cannabinoid G Protein-coupled Receptor. Journal of Biological Chemistry, 2014, 289, 5828-5845.	3.4	67
36	The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13087-13092.	7.1	109

#	Article	IF	CITATIONS
37	Activation of <scp>GPR</scp> 18 by cannabinoid compounds: a tale of biased agonism. British Journal of Pharmacology, 2014, 171, 3908-3917.	5.4	131
38	Absence of ALOX5 gene prevents stress-induced memory deficits, synaptic dysfunction and tauopathy in a mouse model of Alzheimer's disease. Human Molecular Genetics, 2014, 23, 6894-6902.	2.9	26
39	Two-pore channels provide insight into the evolution of voltage-gated Ca ²⁺ and Na ⁺ channels. Science Signaling, 2014, 7, ra109.	3.6	98
40	Functional interaction between HIV-gp120 and opioid system in the preoptic anterior hypothalamus. Drug and Alcohol Dependence, 2014, 134, 383-386.	3.2	2
41	Crucial Positively Charged Residues for Ligand Activation of the GPR35 Receptor. Journal of Biological Chemistry, 2014, 289, 3625-3638.	3.4	20
42	CB2-Selective Cannabinoid Receptor Ligands: Synthesis, Pharmacological Evaluation, and Molecular Modeling Investigation of 1,8-Naphthyridin-2(1 <i>H</i>)-one-3-carboxamides. Journal of Medicinal Chemistry, 2014, 57, 8777-8791.	6.4	46
43	Differential Activation of Intracellular versus Plasmalemmal CB ₂ Cannabinoid Receptors. Biochemistry, 2014, 53, 4990-4999.	2.5	46
44	CB ₁ Receptor Allosteric Modulators Display Both Agonist and Signaling Pathway Specificity. Molecular Pharmacology, 2013, 83, 322-338.	2.3	107
45	Identification of the GPR55 Antagonist Binding Site Using a Novel Set of High-Potency GPR55 Selective Ligands. Biochemistry, 2013, 52, 9456-9469.	2.5	59
46	GPR55 and GPR35 and their relationship to cannabinoid and lysophospholipid receptors. Life Sciences, 2013, 92, 453-457.	4.3	43
47	Conclusions: Therapeutic Potential of Novel Cannabinoid Receptors. Receptors, 2013, , 263-280.	0.2	1
48	Differential Activation of Cultured Neonatal Cardiomyocytes by Plasmalemmal Versus Intracellular G Protein-coupled Receptor 55. Journal of Biological Chemistry, 2013, 288, 22481-22492.	3.4	36
49	Novel Insights into CB ₁ Cannabinoid Receptor Signaling: A Key Interaction Identified between the Extracellular-3 Loop and Transmembrane Helix 2. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 189-197.	2.5	18
50	Current Cannabinoid Receptor Nomenclature and Pharmacological Principles. , 2013, , 25-54.		0
51	Cannabinoid receptors: nomenclature and pharmacological principles. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 38, 4-15.	4.8	139
52	The Endocannabinoids Anandamide and Virodhamine Modulate the Activity of the Candidate Cannabinoid Receptor GPR55. Journal of NeuroImmune Pharmacology, 2012, 7, 856-865.	4.1	75
53	Identification of the GPR55 Agonist Binding Site Using a Novel Set of High-Potency GPR55 Selective Ligands. Biochemistry, 2011, 50, 5633-5647.	2.5	62
54	HIV-1 infection and alcohol abuse: Neurocognitive impairment, mechanisms of neurodegeneration and therapeutic interventions. Brain, Behavior, and Immunity, 2011, 25, S61-S70.	4.1	111

#	Article	IF	CITATIONS
55	Lipid bilayer molecular dynamics study of lipid-derived agonists of the putative cannabinoid receptor, GPR55. Chemistry and Physics of Lipids, 2011, 164, 131-143.	3.2	18
56	Intracellular Cannabinoid Type 1 (CB1) Receptors Are Activated by Anandamide. Journal of Biological Chemistry, 2011, 286, 29166-29174.	3.4	83
57	Pharmacological characterization of GPR55, a putative cannabinoid receptor. , 2010, 126, 301-313.		189
58	The endocannabinoid system as a target for the treatment of neurodegenerative disease. British Journal of Pharmacology, 2010, 160, 480-498.	5.4	161
59	Targeting of the Orphan Receptor GPR35 by Pamoic Acid: A Potent Activator of Extracellular Signal-Regulated Kinase and I²-Arrestin2 with Antinociceptive Activity. Molecular Pharmacology, 2010, 78, 560-568.	2.3	113
60	Cannabis and Amyotrophic Lateral Sclerosis: Hypothetical and Practical Applications, and a Call for Clinical Trials. American Journal of Hospice and Palliative Medicine, 2010, 27, 347-356.	1.4	54
61	Cannabinoid receptor activation reduces TNFα-Induced surface localization of AMPAR-type glutamate receptors and excitotoxicity. Neuropharmacology, 2010, 58, 551-558.	4.1	37
62	The Anabolic Role of Cannabinoid Receptor in Bone. FASEB Journal, 2010, 24, 638.5.	0.5	0
63	Atypical Responsiveness of the Orphan Receptor GPR55 to Cannabinoid Ligands. Journal of Biological Chemistry, 2009, 284, 29817-29827.	3.4	240
64	Molecular Biology of Cannabinoid Receptors: Mutational Analyses of the CB Receptors. , 2009, , 203-234.		3
65	CB2 receptor activation attenuates microcirculatory dysfunction during cerebral ischemic/reperfusion injury. Microvascular Research, 2009, 78, 86-94.	2.5	110
66	Monoacylglycerol lipase regulates 2-arachidonoylglycerol action and arachidonic acid levels. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5875-5878.	2.2	75
67	Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. European Journal of Neuroscience, 2008, 27, 572-579.	2.6	69
68	Mapping the Structural Requirements in the CB ₁ Cannabinoid Receptor Transmembrane Helix II for Signal Transduction. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 341-348.	2.5	29
69	Mutation Studies of Ser7.39 and Ser2.60 in the Human CB1Cannabinoid Receptor: Evidence for a Serine-Induced Bend in CB1Transmembrane Helix 7. Molecular Pharmacology, 2007, 71, 1512-1524.	2.3	79
70	Helix 8 Leu in the CB1 Cannabinoid Receptor Contributes to Selective Signal Transduction Mechanisms. Journal of Biological Chemistry, 2007, 282, 25100-25113.	3.4	54
71	Significance of Cannabinoid CB1 Receptors in Improgan Antinociception. Journal of Pain, 2007, 8, 850-860.	1.4	12
72	Biarylpyrazole Inverse Agonists at the Cannabinoid CB1 Receptor:Â Importance of the C-3 Carboxamide Oxygen/Lysine3.28(192) Interaction. Journal of Medicinal Chemistry, 2006, 49, 5969-5987.	6.4	77

#	Article	IF	CITATIONS
73	Antinociceptive activity of chemical congeners of improgan: Optimization of side chain length leads to the discovery of a new, potent, non-opioid analgesic. Neuropharmacology, 2006, 51, 447-456.	4.1	13
74	AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. European Journal of Pharmacology, 2006, 542, 100-105.	3.5	132
75	Endocannabinoids and Intracellular Signaling. , 2005, , .		1
76	Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. Journal of Neuro-Oncology, 2005, 74, 31-40.	2.9	86
77	(-)-7′-Isothiocyanato-11-hydroxy-1′,1′-dimethylheptylhexahydrocannabinol (AM841), a High-Affinity Electrophilic Ligand, Interacts Covalently with a Cysteine in Helix Six and Activates the CB1 Cannabinoid Receptor. Molecular Pharmacology, 2005, 68, 1623-1635.	2.3	86
78	Structural Mimicry in Class A G Protein-coupled Receptor Rotamer Toggle Switches. Journal of Biological Chemistry, 2004, 279, 48024-48037.	3.4	142
79	Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2004, 5, 33-39.	1.2	108
80	An Aromatic Microdomain at the Cannabinoid CB1 Receptor Constitutes an Agonist/Inverse Agonist Binding Region. Journal of Medicinal Chemistry, 2003, 46, 5139-5152.	6.4	189
81	A critical role for a tyrosine residue in the cannabinoid receptors for ligand recognition. Biochemical Pharmacology, 2002, 63, 2121-2136.	4.4	63
82	Activation of the CB1 cannabinoid receptor protects cultured mouse spinal neurons against excitotoxicity. Neuroscience Letters, 2001, 309, 197-201.	2.1	109
83	Separation of cannabinoid receptor affinity and efficacy in delta-8-tetrahydrocannabinol side-chain analogues. British Journal of Pharmacology, 2001, 132, 525-535.	5.4	9
84	Role for C-Tail Residues in Delta Opioid Receptor Downregulation. DNA and Cell Biology, 2000, 19, 93-101.	1.9	16
85	Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB1 and CB2 receptor binding. Drug and Alcohol Dependence, 2000, 60, 133-140.	3.2	235
86	Novel Cannabinol Probes for CB1 and CB2 Cannabinoid Receptors. Journal of Medicinal Chemistry, 2000, 43, 3778-3785.	6.4	61
87	3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ8-THC and related compounds: synthesis of selective ligands for the CB2 receptor. Bioorganic and Medicinal Chemistry, 1999, 7, 2905-2914.	3.0	280
88	An investigation into the structural determinants of cannabinoid receptor ligand efficacy. British Journal of Pharmacology, 1999, 126, 1575-1584.	5.4	22
89	Cannabinoid agonists and antagonists discriminated by receptor binding in rat cerebellum. British Journal of Pharmacology, 1999, 128, 684-688.	5.4	12
90	Stereoselective μ- and δ-opioid receptor-related antinociception and binding with (+)-thebaine. European Journal of Pharmacology, 1999, 365, 143-147.	3.5	26

#	Article	IF	CITATIONS
91	Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. European Journal of Pharmacology, 1999, 377, 117-125.	3.5	132
92	Unique Analogues of Anandamide:Â Arachidonyl Ethers and Carbamates and Norarachidonyl Carbamates and Ureas. Journal of Medicinal Chemistry, 1999, 42, 1975-1981.	6.4	26
93	High-Level Expression of the Human CB2 Cannabinoid Receptor Using a Baculovirus System. Biochemical Pharmacology, 1998, 55, 1893-1905.	4.4	22
94	The Bioactive Conformation of Aminoalkylindoles at the Cannabinoid CB1 and CB2 Receptors:Â Insights Gained from (E)- and (Z)-Naphthylidene Indenes. Journal of Medicinal Chemistry, 1998, 41, 5177-5187.	6.4	60
95	Importance of the C-1 Substituent in Classical Cannabinoids to CB2Receptor Selectivity:Â Synthesis and Characterization of a Series ofO,2-Propano-Δ8-tetrahydrocannabinol Analogs. Journal of Medicinal Chemistry, 1997, 40, 3312-3318.	6.4	17
96	Isolation and expression of a mouse CB1 cannabinoid receptor gene. Biochemical Pharmacology, 1997, 53, 207-214.	4.4	103
97	Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB ¹ receptors on peripheral sympathetic nerves. British Journal of Pharmacology, 1996, 118, 2023-2028.	5.4	305
98	Synthesis and Pharmacology of a Very Potent Cannabinoid Lacking a Phenolic Hydroxyl with High Affinity for the CB2 Receptor. Journal of Medicinal Chemistry, 1996, 39, 3875-3877.	6.4	149
99	Molecular Neurobiology of The Cannabinoid Receptor. International Review of Neurobiology, 1996, 39, 197-221.	2.0	59
100	Cannabinoid receptor down-regulation without alteration of the inhibitory effect of CP 55,940 on adenylyl cyclase in the cerebellum of CP 55,940-tolerant mice. Brain Research, 1996, 706, 13-20.	2.2	89
101	Antisense oligodeoxynucleotides to the κ-1 receptor block the antinociceptive effects of Δ9-THC in the spinal cord. Brain Research, 1995, 689, 157-158.	2.2	30
102	Evaluation of a series of N-alkyl benzomorphans in cell lines expressing transfected δ- and μ-opioid receptors. Biochemical Pharmacology, 1995, 50, 851-859.	4.4	6
103	Isolation and developmental expression of a rat cDNA encoding a cysteine-rich zinc finger protein. Nucleic Acids Research, 1994, 22, 5477-5483.	14.5	21
104	Cannabinoid receptors in developing rats: detection of mRNA and receptor binding. Drug and Alcohol Dependence, 1994, 36, 27-31.	3.2	53
105	Expression of a cannabinoid receptor in baculo virus-infected insect cells. Biochemical Pharmacology, 1994, 48, 1231-1243.	4.4	20
106	Progress toward Understanding the Cannabinoid Receptor and Its Second Messenger Systems. Advances in Pharmacology, 1994, 25, 341-397.	2.0	24
107	Development of behavioral tolerance to î"9-THC without alteration of cannabinoid receptor binding or mRNA levels in whole brain. Pharmacology Biochemistry and Behavior, 1993, 46, 575-579.	2.9	81
108	Developmental expression of cannabinoid receptor mRNA. Developmental Brain Research, 1993, 76, 75-78.	1.7	52

#	Article	IF	CITATIONS
109	Neurobiology of marijuana abuse. Trends in Pharmacological Sciences, 1992, 13, 201-206.	8.7	207
110	Regulation of both preproenkephalin mRNA and its derived opioids by haloperidol — a method for measurement of peptides and mRNA in the same tissue extract. Molecular Brain Research, 1990, 8, 243-248.	2.3	21
111	Modification of opioid agonist binding by pertussis toxin. Brain Research, 1987, 417, 70-74.	2.2	17
112	Membrane fluidity and fatty acid composition of phospholipids in erythrocyte membranes of patients with huntington disease. Journal of Neuroscience Research, 1979, 4, 183-187.	2.9	14