Marco Bugliani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3230591/publications.pdf

Version: 2024-02-01

102	0 200	47006	48315 O O
103	8,288	47	88
papers	citations	h-index	g-index
105	105	105	13181
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nature Genetics, 2009, 41, 82-88.	21.4	642
2	Functional and Molecular Defects of Pancreatic Islets in Human Type 2 Diabetes. Diabetes, 2005, 54, 727-735.	0.6	421
3	Beta Cell Hubs Dictate Pancreatic Islet Responses toÂGlucose. Cell Metabolism, 2016, 24, 389-401.	16.2	370
4	The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia, 2007, 50, 2486-2494.	6.3	361
5	DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO Journal, 2012, 31, 1405-1426.	7.8	355
6	Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia, 2009, 52, 1083-1086.	6.3	311
7	Pancreatic Islets from Type 2 Diabetic Patients Have Functional Defects and Increased Apoptosis That Are Ameliorated by Metformin. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5535-5541.	3.6	304
8	RNA Sequencing Identifies Dysregulation of the Human Pancreatic Islet Transcriptome by the Saturated Fatty Acid Palmitate. Diabetes, 2014, 63, 1978-1993.	0.6	226
9	A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia, 2012, 55, 3262-3272.	6.3	208
10	Lipotoxicity disrupts incretin-regulated human \hat{l}^2 cell connectivity. Journal of Clinical Investigation, 2013, 123, 4182-4194.	8.2	203
11	Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia, 2015, 58, 2307-2316.	6.3	181
12	Conventional and Neo-antigenic Peptides Presented by \hat{l}^2 Cells Are Targeted by Circulating Na \tilde{A} -ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	16.2	177
13	PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis. Diabetes, 2009, 58, 1283-1291.	0.6	152
14	Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPAR $\hat{1}^3$ ₂ in the modulation of insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E560-E567.	3.5	134
15	Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia, 2018, 61, 641-657.	6.3	131
16	Class II Phosphoinositide 3-Kinase Regulates Exocytosis of Insulin Granules in Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2011, 286, 4216-4225.	3.4	130
17	MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetologica, 2015, 52, 523-530.	2.5	127
18	ADCY5 Couples Glucose to Insulin Secretion in Human Islets. Diabetes, 2014, 63, 3009-3021.	0.6	124

#	Article	IF	Citations
19	Is There a Role for Locally Produced Interleukin-1 in the Deleterious Effects of High Glucose or the Type 2 Diabetes Milieu to Human Pancreatic Islets?. Diabetes, 2005, 54, 3238-3244.	0.6	118
20	Palmitate Activates Autophagy in INS-1E \hat{l}^2 -Cells and in Isolated Rat and Human Pancreatic Islets. PLoS ONE, 2012, 7, e36188.	2.5	116
21	Are we overestimating the loss of beta cells in type 2 diabetes?. Diabetologia, 2014, 57, 362-365.	6.3	115
22	Hepatitis C Virus Infection and Human Pancreatic Â-Cell Dysfunction. Diabetes Care, 2005, 28, 940-941.	8.6	113
23	Optical control of insulin release using a photoswitchable sulfonylurea. Nature Communications, 2014, 5, 5116.	12.8	106
24	Gliclazide protects human islet beta-cells from apoptosis induced by intermittent high glucose. Diabetes/Metabolism Research and Reviews, 2007, 23, 234-238.	4.0	103
25	Mitochondrial and ER-Targeted eCALWY Probes Reveal High Levels of Free Zn ²⁺ . ACS Chemical Biology, 2014, 9, 2111-2120.	3.4	102
26	Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia, 2013, 56, 1068-1077.	6.3	101
27	Age- and diet-dependent requirement of DJ-1 for glucose homeostasis in mice with implications for human type 2 diabetes. Journal of Molecular Cell Biology, 2012, 4, 221-230.	3.3	96
28	The Myokine Irisin Is Released in Response to Saturated Fatty Acids and Promotes Pancreatic \hat{l}^2 -Cell Survival and Insulin Secretion. Diabetes, 2017, 66, 2849-2856.	0.6	96
29	MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p Regulate the Expression of Proapoptotic BH3-Only Proteins DP5 and PUMA in Human Pancreatic β-Cells. Diabetes, 2017, 66, 100-112.	0.6	87
30	Pleiotropic Effects of GIP on Islet Function Involve Osteopontin. Diabetes, 2011, 60, 2424-2433.	0.6	83
31	The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. European Journal of Endocrinology, 2006, 154, 355-361.	3.7	80
32	Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin–proteasome system in pancreatic beta cell dysfunction. Molecular and Cellular Endocrinology, 2013, 367, 1-10.	3.2	76
33	The effects of kisspeptin on $\hat{l}^2 \hat{a} \in \mathcal{E}$ ell function, serum metabolites and appetite in humans. Diabetes, Obesity and Metabolism, 2018, 20, 2800-2810.	4.4	74
34	Pancreatic Beta Cell Identity in Humans and the Role of Type 2 Diabetes. Frontiers in Cell and Developmental Biology, 2017, 5, 55.	3.7	67
35	Incretin-Modulated Beta Cell Energetics in Intact Islets of Langerhans. Molecular Endocrinology, 2014, 28, 860-871.	3.7	66
36	Persistent or Transient Human \hat{l}^2 Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes. Cell Reports, 2020, 33, 108466.	6.4	65

#	Article	IF	CITATIONS
37	In vitro use of free fatty acids bound to albumin: A comparison of protocols. BioTechniques, 2015, 58, 228-33.	1.8	63
38	Atorvastatin but Not Pravastatin Impairs Mitochondrial Function in Human Pancreatic Islets and Rat \hat{l}^2 -Cells. Direct Effect of Oxidative Stress. Scientific Reports, 2017, 7, 11863.	3.3	59
39	G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: The role of type 2 diabetes and fatty acids. Nutrition, Metabolism and Cardiovascular Diseases, 2010, 20, 22-25.	2.6	56
40	Thrombospondin 1 protects pancreatic β-cells from lipotoxicity via the PERK–NRF2 pathway. Cell Death and Differentiation, 2016, 23, 1995-2006.	11.2	56
41	Inflammation-Induced Citrullinated Glucose-Regulated Protein 78 Elicits Immune Responses in Human Type 1 Diabetes. Diabetes, 2018, 67, 2337-2348.	0.6	56
42	The Î ² -Cell in Human Type 2 Diabetes. Advances in Experimental Medicine and Biology, 2010, 654, 501-514.	1.6	54
43	Goals of Treatment for Type 2 Diabetes: Â-Cell preservation for glycemic control. Diabetes Care, 2009, 32, S178-S183.	8.6	53
44	Virus-like infection induces human \hat{l}^2 cell dedifferentiation. JCI Insight, 2018, 3, .	5.0	53
45	Enhanced Signaling Downstream of Ribonucleic Acid-Activated Protein Kinase-Like Endoplasmic Reticulum Kinase Potentiates Lipotoxic Endoplasmic Reticulum Stress in Human Islets. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1442-1449.	3.6	52
46	<i>\hat{l}^2</i> â€Cell inflammation in human type 2 diabetes and the role of autophagy. Diabetes, Obesity and Metabolism, 2013, 15, 130-136.	4.4	52
47	Glucocorticoids Reprogram β-Cell Signaling to Preserve Insulin Secretion. Diabetes, 2018, 67, 278-290.	0.6	52
48	LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus. Nature Communications, 2018, 9, 1488.	12.8	50
49	The Pancreatic \hat{l}^2 Cells in Human Type 2 Diabetes. Advances in Experimental Medicine and Biology, 2013, 771, 288-309.	1.6	49
50	A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function. Chemical Communications, 2015, 51, 6018-6021.	4.1	49
51	DPP-4 is expressed in human pancreatic beta cells and its direct inhibition improves beta cell function and survival in type 2 diabetes. Molecular and Cellular Endocrinology, 2018, 473, 186-193.	3.2	48
52	Type 2 Diabetes Susceptibility Gene Expression in Normal or Diabetic Sorted Human Alpha and Beta Cells: Correlations with Age or BMI of Islet Donors. PLoS ONE, 2010, 5, e11053.	2.5	47
53	Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia, 2011, 54, 819-827.	6.3	46
54	Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia, 2015, 58, 2554-2562.	6.3	46

#	Article	IF	Citations
55	Ultrastructural alterations of pancreatic beta cells in human diabetes mellitus. Diabetes/Metabolism Research and Reviews, 2017, 33, e2894.	4.0	46
56	SRp55 Regulates a Splicing Network That Controls Human Pancreatic \hat{l}^2 -Cell Function and Survival. Diabetes, 2018, 67, 423-436.	0.6	46
57	Discovery of Molecular Pathways Mediating 1,25-Dihydroxyvitamin D3 Protection Against Cytokine-Induced Inflammation and Damage of Human and Male Mouse Islets of Langerhans. Endocrinology, 2014, 155, 736-747.	2.8	45
58	Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet beta cells is associated with preserved ATP/ADP ratio. Diabetes Research and Clinical Practice, 2014, 104, 163-170.	2.8	45
59	Effects of exendinâ€4 on islets from type 2 diabetes patients. Diabetes, Obesity and Metabolism, 2008, 10, 515-519.	4.4	44
60	Ubiquitin D Regulates IRE1 \hat{l} ±/c-Jun N-terminal Kinase (JNK) Protein-dependent Apoptosis in Pancreatic Beta Cells. Journal of Biological Chemistry, 2016, 291, 12040-12056.	3.4	44
61	Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal \hat{l}^2 cells and human pancreatic islets. Scientific Reports, 2017, 7, 13445.	3.3	44
62	Pancreatic \hat{l}^2 -cell protection from inflammatory stress by the endoplasmic reticulum proteins thrombospondin 1 and mesencephalic astrocyte-derived neutrotrophic factor (MANF). Journal of Biological Chemistry, 2017, 292, 14977-14988.	3.4	41
63	The p66Shc redox adaptor protein is induced by saturated fatty acids and mediates lipotoxicity-induced apoptosis in pancreatic beta cells. Diabetologia, 2015, 58, 1260-1271.	6.3	40
64	Ultrastructural morphometric analysis of insulin secretory granules in human type 2 diabetes. Acta Diabetologica, 2012, 49, 247-252.	2.5	39
65	JunB protects β-cells from lipotoxicity via the XBP1–AKT pathway. Cell Death and Differentiation, 2014, 21, 1313-1324.	11.2	37
66	The type 2 diabetes-associated HMG20A gene is mandatory for islet beta cell functional maturity. Cell Death and Disease, 2018, 9, 279.	6.3	36
67	MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic \hat{l}^2 -Cells. Diabetes, 2018, 67, 461-472.	0.6	36
68	Glucolipotoxicity initiates pancreatic \hat{l}^2 -cell death through TNFR5/CD40-mediated STAT1 and NF- \hat{l}^9 B activation. Cell Death and Disease, 2016, 7, e2329-e2329.	6.3	34
69	The direct effects of tacrolimus and cyclosporin A on isolated human islets: A functional, survival and gene expression study. Islets, 2009, 1, 106-110.	1.8	33
70	Apoptotic, Regenerative, And Immune-Related Signaling in Human Islets from Type 2 Diabetes Individuals. Journal of Proteome Research, 2009, 8, 5650-5656.	3.7	32
71	Protective role of the ELOVL2/docosahexaenoic acid axis in glucolipotoxicity-induced apoptosis in rodent beta cells and human islets. Diabetologia, 2018, 61, 1780-1793.	6.3	32
72	Genetic and Functional Assessment of the Role of the rs13431652-A and rs573225-A Alleles in the <i>>G6PC2</i> > Promoter That Are Strongly Associated With Elevated Fasting Glucose Levels. Diabetes, 2010, 59, 2662-2671.	0.6	31

#	Article	lF	CITATIONS
73	The miRNAs miR-211-5p and miR-204-5p modulate ER stress in human beta cells. Journal of Molecular Endocrinology, 2019, 63, 139-149.	2.5	29
74	Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury. PLoS ONE, 2016, 11, e0157604.	2.5	28
75	Glucagon-Like Peptide-1 Protects Human Islets against Cytokine-Mediated Î ² -Cell Dysfunction and Death: A Proteomic Study of the Pathways Involved. Journal of Proteome Research, 2013, 12, 4193-4206.	3.7	27
76	The immunoproteasome is induced by cytokines and regulates apoptosis in human islets. Journal of Endocrinology, 2017, 233, 369-379.	2.6	26
77	Conformal coating by multilayer nano-encapsulation for the protection of human pancreatic islets: In-vitro and in-vivo studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2191-2203.	3.3	26
78	Insulin secretory granules labelled with phogrin-fluorescent proteins show alterations in size, mobility and responsiveness to glucose stimulation in living l²-cells. Scientific Reports, 2019, 9, 2890.	3.3	24
79	Improved insulin secretory function and reduced chemotactic properties after tissue culture of islets from type 1 diabetic patients. Diabetes/Metabolism Research and Reviews, 2004, 20, 246-251.	4.0	21
80	Effects of C-peptide on isolated human pancreatic islet cells. Diabetes/Metabolism Research and Reviews, 2007, 23, 215-219.	4.0	19
81	Glucagon-like peptide 1 protects INS-1E mitochondria against palmitate-mediated beta-cell dysfunction: a proteomic study. Molecular BioSystems, 2015, 11, 1696-1707.	2.9	19
82	Effects of exposure of human islet beta-cells to normal and high glucose levels with or without gliclazide or glibenclamide. Diabetes and Metabolism, 2009, 35, 293-298.	2.9	18
83	Administering 25-hydroxyvitamin D3 in vitamin D-deficient young type 1A diabetic patients reduces reactivity against islet autoantigens. Clinical Nutrition, 2014, 33, 1153-1156.	5.0	18
84	Co-localization of acinar markers and insulin in pancreatic cells of subjects with type 2 diabetes. PLoS ONE, 2017, 12, e0179398.	2.5	17
85	Circulating unmethylated CHTOP and INS DNA fragments provide evidence of possible islet cell death in youth with obesity and diabetes. Clinical Epigenetics, 2020, 12, 116.	4.1	17
86	A role for autophagy in \hat{I}^2 -cell life and death. Islets, 2009, 1, 157-159.	1.8	15
87	Beneficial Effect of the Nonpeptidyl Low Molecular Weight Radical Scavenger IAC on Cultured Human Islet Function. Cell Transplantation, 2008, 17, 1271-1276.	2.5	13
88	FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes. International Journal of Molecular Sciences, 2017, 18, 2234.	4.1	13
89	Fostering improved human islet research: a European perspective. Diabetologia, 2019, 62, 1514-1516.	6.3	13
90	From genotype to human \hat{l}^2 cell phenotype and beyond. Islets, 2012, 4, 323-332.	1.8	11

#	ARTICLE	IF	CITATIONS
91	Transcription factors of beta-cell differentiation and maturation in isolated human islets: Effects of high glucose, high free fatty acids and type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 2006, 16, e7-e8.	2.6	9
92	EuroDia: a beta-cell gene expression resource. Database: the Journal of Biological Databases and Curation, 2010, 2010, baq024-baq024.	3.0	9
93	Direct effects of rosuvastatin on pancreatic human beta cells. Acta Diabetologica, 2013, 50, 983-985.	2.5	9
94	Pro-Inflammatory Cytokines Induce Insulin and Glucagon Double Positive Human Islet Cells That Are Resistant to Apoptosis. Biomolecules, 2021, 11, 320.	4.0	9
95	Histopathology and ex vivo insulin secretion of pancreatic islets in gestational diabetes: A case report. Islets, 2011, 3, 231-233.	1.8	8
96	Labeling and Tracking of Human Pancreatic Islets Using Carbon Nanotubes. Journal of Biomedical Nanotechnology, 2015, 11, 730-738.	1.1	6
97	An alternative and simple method to consistently prepare viable isolated human islets for clinical transplantation. Transplantation Proceedings, 2004, 36, 605-606.	0.6	5
98	Probing the light scattering properties of insulin secretory granules in single live cells. Biochemical and Biophysical Research Communications, 2018, 503, 2710-2714.	2.1	5
99	Spatiotemporal Correlation Spectroscopy Reveals a Protective Effect of Peptide-Based GLP-1 Receptor Agonism against Lipotoxicity on Insulin Granule Dynamics in Primary Human \hat{I}^2 -Cells. Pharmaceutics, 2021, 13, 1403.	4.5	2
100	Protective effects of Stevia rebaudiana extracts on beta cells in lipotoxic conditions. Acta Diabetologica, 2021, , 1.	2.5	2
101	Enhanced Signaling Downstream of Ribonucleic Acid-Dependent Protein Kinase-Like Kinase Potentiates Lipotoxic Endoplasmic Reticulum Stress in Human Islets. Molecular Endocrinology, 2010, 24, 470-470.	3.7	O
102	The β-Cell in Human Type 2 Diabetes. , 2014, , 1-13.		0
103	The β-Cell in Human Type 2 Diabetes. , 2015, , 801-815.		0