
Zhan-Ying Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3230070/publications.pdf Version: 2024-02-01

7HAN-YING YANG

#	Article	IF	CITATIONS
1	Kink-like breathers in Bose-Einstein condensates with helicoidal spin-orbit coupling. Frontiers of Physics, 2022, 17, 1.	5.0	3
2	Magnetic lump motion in saturated ferromagnetic films. Physical Review E, 2022, 105, 014205.	2.1	21
3	Heteroclinic-structure transition of the pure quartic modulation instability. Physical Review Research, 2022, 4, .	3.6	12
4	Control of matter-wave solitons using an accelerating atomic mirror. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 145301.	1.5	1
5	Frequency conversion dynamics of vector modulation instability in normal-dispersion high-birefringence fibers. Nonlinear Dynamics, 2021, 103, 1035-1041.	5.2	6
6	Controllable generation of several nonlinear waves in optical fibers with third-order dispersion. Physical Review A, 2021, 103, .	2.5	5
7	Matter-wave stripe solitons induced by helicoidal spin–orbit coupling. Annals of Physics, 2021, 431, 168562.	2.8	6
8	Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates. Chinese Physics Letters, 2021, 38, 090302.	3.3	2
9	Interference properties of two-component matter wave solitons. Chinese Physics B, 2020, 29, 020303.	1.4	13
10	Modified linear stability analysis for quantitative dynamics of a perturbed plane wave. Physical Review E, 2020, 102, 022207.	2.1	8
11	Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction. Chinese Physics Letters, 2020, 37, 040501.	3.3	8
12	Breather-induced quantised superfluid vortex filaments and their characterisation. Communications in Theoretical Physics, 2020, 72, 075802.	2.5	2
13	Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect [*] . Chinese Physics Letters, 2020, 37, 030302.	3.3	4
14	Quantitative relations between fundamental nonlinear waves and modulation instability. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 010501.	0.5	4
15	High-order rogue waves excited from multi-Gaussian perturbations on a continuous wave. Optics Letters, 2020, 45, 2399.	3.3	7
16	Dynamics of perturbations at the critical points between modulation instability and stability regimes. Chaos, 2019, 29, 083112.	2.5	4
17	Excitation conditions of several fundamental nonlinear waves on continuous-wave background. Physical Review E, 2019, 99, 012216.	2.1	17
18	Magnetized vector solitons in a spin-orbit coupled spin-1 Bose-Einstein condensate with Zeeman coupling. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2883-2890.	2.1	7

ZHAN-YING YANG

#	Article	IF	CITATIONS
19	Vector rogue waves on a double-plane wave background. Europhysics Letters, 2019, 125, 40003.	2.0	15
20	Chessboard-like spatio-temporal interference patterns and their excitation. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1294.	2.1	20
21	Controllable optical superregular breathers in the femtosecond regime. Chinese Physics B, 2018, 27, 010504.	1.4	5
22	Mechanism of Kuznetsov-Ma breathers. Physical Review E, 2018, 97, 022218.	2.1	26
23	Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons. Chaos, 2018, 28, 013111.	2.5	8
24	Breathers and solitons on two different backgrounds in a generalized coupled Hirota system with four wave mixing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1738-1744.	2.1	10
25	Characteristics of fundamental and superregular modes in a multiple self-induced transparency system. Communications in Nonlinear Science and Numerical Simulation, 2018, 63, 161-170.	3.3	21
26	Excitations of breathers and rogue wave in the Heisenberg spin chain. Annals of Physics, 2018, 388, 315-322.	2.8	4
27	Nonlinear Excitation and State Transition of Multi-Peak Solitons. Chinese Physics Letters, 2018, 35, 070501.	3.3	1
28	Polariton superregular breathers in a resonant erbium-doped fiber. Physical Review E, 2018, 98, .	2.1	26
29	Growth rate of modulation instability driven by superregular breathers. Chaos, 2018, 28, 083110.	2.5	36
30	Surface energy of the one-dimensional supersymmetric t â^' J model with unparallel boundary fields. Journal of High Energy Physics, 2018, 2018, 1.	4.7	6
31	Dynamics of rogue wave excitation pattern on stripe phase backgrounds in a two-component Bose-Einstein condensate. Communications in Nonlinear Science and Numerical Simulation, 2017, 49, 39-47.	3.3	16
32	Nonlinear Waves on Localized and Periodic Backgrounds with Time-Space Modulation. Communications in Theoretical Physics, 2017, 67, 520.	2.5	1
33	Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1874-1878.	2.1	10
34	Superregular breathers in a complex modified Korteweg-de Vries system. Chaos, 2017, 27, 083120.	2.5	43
35	Generation mechanisms of fundamental rogue wave spatial-temporal structure. Physical Review E, 2017, 96, 022211.	2.1	36
36	Asymmetric W-shaped and M-shaped soliton pulse generated from a weak modulation in an exponential dispersion decreasing fiber. Chinese Physics B, 2017, 26, 120503.	1.4	10

ZHAN-YING YANG

#	Article	IF	CITATIONS
37	Soliton excitations on a continuous-wave background in the modulational instability regime with fourth-order effects. Physical Review E, 2017, 95, 042212.	2.1	37
38	Localized Optical Waves in Defocusing Regime of Negative-Index Materials. Chinese Physics Letters, 2017, 34, 100501.	3.3	1
39	Optical Rogue Wave Excitation and Modulation on a Bright Soliton Background. Chinese Physics Letters, 2016, 33, 010501.	3.3	6
40	Characteristics of optical multi-peak solitons induced by higher-order effects in an erbium-doped fiber system. European Physical Journal D, 2016, 70, 1.	1.3	6
41	Symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime. Physical Review E, 2016, 94, 042221.	2.1	54
42	Stable supercontinuum pulse generated by modulation instability in a dispersion-managed fiber. Journal of Modern Optics, 2016, 63, 1397-1402.	1.3	6
43	State transition induced by higher-order effects and background frequency. Physical Review E, 2015, 91, 022904.	2.1	83
44	Transition, coexistence, and interaction of vector localized waves arising from higher-order effects. Annals of Physics, 2015, 362, 130-138.	2.8	50
45	Different types of nonlinear localized and periodic waves in an erbium-doped fiber system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2991-2994.	2.1	33
46	The rogue waves with quintic nonlinearity and nonlinear dispersion effects in nonlinear optical fibers. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 9-13.	3.3	46
47	Pair-tunneling induced localized waves in a vector nonlinear Schrödinger equation. Communications in Nonlinear Science and Numerical Simulation, 2015, 23, 21-27.	3.3	31
48	Vector breathers and the inelastic interaction in a three-mode nonlinear optical fiber. Physical Review A, 2014, 89, .	2.5	44
49	Rogue-wave pattern transition induced by relative frequency. Physical Review E, 2014, 90, 022918.	2.1	63
50	Localized Waves on Continuous Wave Background in a Two-Mode Nonlinear Fiber with High-Order Effects. Journal of the Physical Society of Japan, 2014, 83, 104401.	1.6	19
51	Optical rogue waves generated on Gaussian background beam. Optics Letters, 2014, 39, 1057.	3.3	17
52	Dynamics of Nonautonomous Dark Solitons. Communications in Theoretical Physics, 2013, 59, 703-710.	2.5	7
53	Nonautonomous Dark Solitons and Rogue Waves in a Graded-Index Grating Waveguide. Communications in Theoretical Physics, 2013, 59, 311-318.	2.5	5
54	Dynamics of a nonautonomous soliton in a generalized nonlinear Schrödinger equation. Physical Review E, 2011, 83, 066602.	2.1	28

ZHAN-YING YANG

#	Article	IF	CITATIONS
55	Bright chirp-free and chirped nonautonomous solitons under dispersion and nonlinearity management. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 236.	2.1	17
56	Precisely controllable bright nonautonomous solitons in Bose–Einstein condensate. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1839-1842.	2.1	22
57	The dynamics of nonautonomous soliton inside planar graded-index waveguide with distributed coefficients. Optics Communications, 2010, 283, 3768-3772.	2.1	18
58	Snakelike nonautonomous solitons in a graded-index grating waveguide. Physical Review A, 2010, 81, .	2.5	47