Janine K Nunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3229697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scalable, Shape-Specific, Top-Down Fabrication Methods for the Synthesis of Engineered Colloidal Particles. Langmuir, 2010, 26, 13086-13096.	3.5	202
2	Colloidal Crystallization and Banding in a Cylindrical Geometry. Journal of the American Chemical Society, 2004, 126, 5978-5979.	13.7	112
3	The Patterning of Subâ€500 nm Inorganic Oxide Structures. Advanced Materials, 2008, 20, 2667-2673.	21.0	97
4	Multifunctional Shape and Size Specific Magneto-Polymer Composite Particles. Nano Letters, 2010, 10, 1113-1119.	9.1	67
5	Electrically Driven Alignment and Crystallization of Unique Anisotropic Polymer Particles. Langmuir, 2008, 24, 8421-8426.	3.5	61
6	Fabricating Shaped Microfibers with Inertial Microfluidics. Advanced Materials, 2014, 26, 3712-3717.	21.0	57
7	Flow-induced gelation of microfiber suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8557-E8564.	7.1	52
8	Microfluidic tailoring of the two-dimensional morphology of crimped microfibers. Soft Matter, 2013, 9, 4227.	2.7	43
9	Control of the length of microfibers. Lab on A Chip, 2012, 12, 2301.	6.0	35
10	Controlling capillary fingering using pore size gradients in disordered media. Physical Review Fluids, 2019, 4, .	2.5	26
11	Generation of Antibubbles from Core–Shell Double Emulsion Templates Produced by Microfluidics. Langmuir, 2013, 29, 8782-8787.	3.5	24
12	Multicompartment microfibers: fabrication and selective dissolution of composite droplet-in-fiber structures. Journal of Materials Chemistry B, 2014, 2, 7866-7871.	5.8	22
13	Droplet Microâ€Reactor for Internal Gelation to Fabricate ZrO ₂ Ceramic Microspheres. Journal of the American Ceramic Society, 2017, 100, 41-48.	3.8	22
14	Laboratory layered latte. Nature Communications, 2017, 8, 1960.	12.8	20
15	A Scalable Platform for Functional Nanomaterials via Bubbleâ€Bursting. Advanced Materials, 2016, 28, 4047-4052.	21.0	19
16	Deposition of Quantum Dots in a Capillary Tube. Langmuir, 2015, 31, 12560-12566.	3.5	18
17	Controlled generation of spiky microparticles by ionic cross-linking within an aqueous two-phase system. Soft Matter, 2019, 15, 3301-3306.	2.7	15
18	Microfluidic fabrication of ceramic microspheres with controlled morphologies. Journal of the American Ceramic Society, 2018, 101, 3787-3796.	3.8	14

JANINE K NUNES

#	Article	IF	CITATIONS
19	Design of a microfluidic device for the measurement of the elastic modulus of deformable particles. Soft Matter, 2019, 15, 880-889.	2.7	14
20	Quantifying the effect of a mask on expiratory flows. Physical Review Fluids, 2021, 6, .	2.5	13
21	Effect of the Polydispersity of a Colloidal Drop on Drying Induced Stress as Measured by the Buckling of a Floating Sheet. Physical Review Letters, 2016, 116, 238001.	7.8	12
22	Shear-induced migration of confined flexible fibers. Soft Matter, 2022, 18, 514-525.	2.7	11
23	Hierarchical Control of Polymer Composite Nano- and Micro-Structure with Lithography. Chemistry of Materials, 2010, 22, 4069-4075.	6.7	6
24	Selfâ€Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets. Macromolecular Rapid Communications, 2020, 41, e2000334.	3.9	6
25	Electrostatic wrapping of a microfiber around a curved particle. Soft Matter, 2021, 17, 3609-3618.	2.7	6
26	Regime Map and Triple Point in Selective Withdrawal. Physical Review Letters, 2020, 125, 264502.	7.8	4
27	Representative subsampling of sedimenting blood. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190223.	2.1	3
28	A quantitative study of the effect of flow on the photopolymerization of fibers. Soft Matter, 2019, 15, 9553-9564.	2.7	3
29	Buckling of elastic fibers in a shear flow. New Journal of Physics, 2022, 24, 013013.	2.9	3
30	Inexpensive Multipatient Respiratory Monitoring System for Helmet Ventilation During COVID-19 Pandemic. Journal of Medical Devices, Transactions of the ASME, 2022, 16, .	0.7	3
31	Design Of An Optofluidic Device For The Measurement Of The Elastic Modulus Of Deformable Particles. EPJ Web of Conferences, 2019, 215, 14003.	0.3	0