Victor H Engelhard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3229106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature, 1988, 336, 79-81.	27.8	408
2	The Minor Histocompatibility Antigen HA-1: A Diallelic Gene with a Single Amino Acid Polymorphism. Science, 1998, 279, 1054-1057.	12.6	399
3	Structure of Peptides Associated with Class I and Class II MHC Molecules. Annual Review of Immunology, 1994, 12, 181-207.	21.8	365
4	Human H-Y: a Male-Specific Histocompatibility Antigen Derived from the SMCY Protein. Science, 1995, 269, 1588-1590.	12.6	345
5	Lymph node–resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. Journal of Experimental Medicine, 2010, 207, 681-688.	8.5	321
6	NKT Cell Activation Mediates Neutrophil IFN-γ Production and Renal Ischemia-Reperfusion Injury. Journal of Immunology, 2007, 178, 5899-5911.	0.8	307
7	Clinical and Immunologic Results of a Randomized Phase II Trial of Vaccination Using Four Melanoma Peptides Either Administered in Granulocyte-Macrophage Colony-Stimulating Factor in Adjuvant or Pulsed on Dendritic Cells. Journal of Clinical Oncology, 2003, 21, 4016-4026.	1.6	303
8	The HLA-A*0201-Restricted H-Y Antigen Contains a Posttranslationally Modified Cysteine That Significantly Affects T Cell Recognition. Immunity, 1997, 6, 273-281.	14.3	275
9	Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. Journal of Experimental Medicine, 2006, 203, 2639-2648.	8.5	271
10	Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood, 2012, 120, 4772-4782.	1.4	256
11	Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. Journal of Experimental Medicine, 2010, 207, 1791-1804.	8.5	211
12	Sphingosine Kinase 2 Is Required for Modulation of Lymphocyte Traffic by FTY720. Journal of Biological Chemistry, 2005, 280, 36865-36872.	3.4	198
13	Structure of peptides associated with MHC class I molecules. Current Opinion in Immunology, 1994, 6, 13-23.	5.5	196
14	Route of Immunization with Peptide-pulsed Dendritic Cells Controls the Distribution of Memory and Effector T Cells in Lymphoid Tissues and Determines the Pattern of Regional Tumor Control. Journal of Experimental Medicine, 2003, 198, 1023-1034.	8.5	196
15	Phosphorylated Peptides Are Naturally Processed and Presented by Major Histocompatibility Complex Class I Molecules in Vivo. Journal of Experimental Medicine, 2000, 192, 1755-1762.	8.5	192
16	The Immunogenicity of a New Human Minor Histocompatibility Antigen Results from Differential Antigen Processing. Journal of Experimental Medicine, 2001, 193, 195-206.	8.5	191
17	MHC Class I–Associated Phosphopeptides Are the Targets of Memory-like Immunity in Leukemia. Science Translational Medicine, 2013, 5, 203ra125.	12.4	186
18	Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14889-14894.	7.1	168

#	Article	IF	CITATIONS
19	Self-Tolerance to the Murine Homologue of a Tyrosinase-Derived Melanoma Antigen. Journal of Experimental Medicine, 2000, 191, 1221-1232.	8.5	154
20	Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. Journal of Immunology, 2018, 200, 432-442.	0.8	153
21	Terminal modifications inhibit proteolytic degradation of an immunogenic mart-127-35 peptide: Implications for peptide vaccines. International Journal of Cancer, 1999, 83, 326-334.	5.1	152
22	Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nature Communications, 2015, 6, 7114.	12.8	139
23	Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nature Communications, 2015, 6, 6771.	12.8	138
24	Deletional Self-Tolerance to a Melanocyte/Melanoma Antigen Derived from Tyrosinase Is Mediated by a Radio-Resistant Cell in Peripheral and Mesenteric Lymph Nodes. Journal of Immunology, 2007, 179, 993-1003.	0.8	132
25	Relapse or Eradication of Cancer Is Predicted by Peptide-Major Histocompatibility Complex Affinity. Cancer Cell, 2013, 23, 516-526.	16.8	131
26	Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nature Immunology, 2008, 9, 1236-1243.	14.5	130
27	The Immunodominant Antigen of an Ultraviolet-induced Regressor Tumor Is Generated by a Somatic Point Mutation in the DEAD Box Helicase p68. Journal of Experimental Medicine, 1997, 185, 695-706.	8.5	125
28	The HA-2 Minor Histocompatibility Antigen Is Derived from a Diallelic Gene Encoding a Novel Human Class I Myosin Protein. Journal of Immunology, 2001, 167, 3223-3230.	0.8	125
29	Control of CD8 T-Cell Infiltration into Tumors by Vasculature and Microenvironment. Advances in Cancer Research, 2015, 128, 263-307.	5.0	123
30	The minor histocompatibility antigen HA-3 arises from differential proteasome–mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein. Blood, 2003, 102, 621-629.	1.4	118
31	Antigens derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunological Reviews, 2002, 188, 136-146.	6.0	117
32	Antigen Density Presented By Dendritic Cells In Vivo Differentially Affects the Number and Avidity of Primary, Memory, and Recall CD8+ T Cells. Journal of Immunology, 2003, 170, 1822-1829.	0.8	116
33	Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. International Journal of Cancer, 2001, 92, 703-711.	5.1	114
34	A Listeria monocytogenes Pentapeptide Is Presented to Cytolytic T Lymphocytes by the H2-M3 MHC Class Ib Molecule. Immunity, 1996, 5, 73-79.	14.3	109
35	The Class I Antigen-processing Pathway for the Membrane Protein Tyrosinase Involves Translation in the Endoplasmic Reticulum and Processing in the Cytosol. Journal of Experimental Medicine, 1998, 187, 37-48.	8.5	109
36	Post-translational modifications of naturally processed MHC-binding epitopes. Current Opinion in Immunology, 2006, 18, 92-97.	5.5	109

#	Article	IF	CITATIONS
37	Tapasin Is a Facilitator, Not an Editor, of Class I MHC Peptide Binding. Journal of Immunology, 2003, 171, 5287-5295.	0.8	103
38	Mechanisms of Spatial and Temporal Development of Autoimmune Vitiligo in Tyrosinase-Specific TCR Transgenic Mice. Journal of Immunology, 2010, 184, 1909-1917.	0.8	100
39	The PANE1 gene encodes a novel human minor histocompatibility antigen that is selectively expressed in B-lymphoid cells and B-CLL. Blood, 2006, 107, 3779-3786.	1.4	99
40	Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12073-12078.	7.1	98
41	Tolerogenic Properties of Lymphatic Endothelial Cells Are Controlled by the Lymph Node Microenvironment. PLoS ONE, 2014, 9, e87740.	2.5	95
42	The Density of Peptides Displayed by Dendritic Cells Affects Immune Responses to Human Tyrosinase and gp100 in HLA-A2 Transgenic Mice. Journal of Immunology, 2000, 164, 2354-2361.	0.8	92
43	Sequential Immune Escape and Shifting of T Cell Responses in a Long-Term Survivor of Melanoma. Journal of Immunology, 2005, 174, 6863-6871.	0.8	91
44	Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens. Cancer Immunology, Immunotherapy, 2000, 48, 661-672.	4.2	89
45	Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Reports, 2021, 36, 109422.	6.4	89
46	Analysis of MHC Class II Antigen Processing by Quantitation of Peptides that Constitute Nested Sets. Journal of Immunology, 2002, 169, 5089-5097.	0.8	88
47	Manipulation of Avidity to Improve Effectiveness of Adoptively Transferred CD8+ T Cells for Melanoma Immunotherapy in Human MHC Class I-Transgenic Mice. Journal of Immunology, 2001, 167, 5824-5831.	0.8	79
48	Definition of a human T cell epitope from influenza A non-structural protein 1 using HLA-A2.1 transgenic mice. International Immunology, 1995, 7, 597-605.	4.0	77
49	Mass-spectrometric evaluation of HLA-A*0201-associated peptides identifies dominant naturally processed forms of CTL epitopes from MART-1 and gp100. , 1999, 82, 669-677.		77
50	Differences in the Expression of Human Class I MHC Alleles and Their Associated Peptides in the Presence of Proteasome Inhibitors. Journal of Immunology, 2001, 167, 1212-1221.	0.8	77
51	Immunodominance Among EBV-Derived Epitopes Restricted by HLA-B27 Does Not Correlate with Epitope Abundance in EBV-Transformed B-Lymphoblastoid Cell Lines. Journal of Immunology, 2000, 164, 6120-6129.	0.8	73
52	The Antigen Processing and Presentation Machinery in Lymphatic Endothelial Cells. Frontiers in Immunology, 2019, 10, 1033.	4.8	70
53	Lymphatic endothelial cells - key players in regulation of tolerance and immunity. Frontiers in Immunology, 2012, 3, 305.	4.8	66
54	Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. Journal of Clinical Investigation, 2018, 128, 1338-1354.	8.2	64

#	Article	IF	CITATIONS
55	Insights into antigen processing gained by direct analysis of the naturally processed class I MHC associated peptide repertoire. Molecular Immunology, 2002, 39, 127-137.	2.2	61
56	Direct analysis of tumor-associated peptide antigens. Current Opinion in Immunology, 1994, 6, 733-740.	5.5	58
57	Immunity to Melanoma Antigens: From Selfâ€Tolerance to Immunotherapy. Advances in Immunology, 2006, 90, 243-295.	2.2	55
58	Incomplete Differentiation of Antigen-Specific CD8 T Cells in Tumor-Draining Lymph Nodes. Journal of Immunology, 2006, 177, 6081-6090.	0.8	55
59	Distinct Role for CD8 T Cells toward Cutaneous Tumors and Visceral Metastases. Journal of Immunology, 2008, 180, 130-137.	0.8	55
60	CD8 T Cells Activated in Distinct Lymphoid Organs Differentially Express Adhesion Proteins and Coexpress Multiple Chemokine Receptors. Journal of Immunology, 2010, 184, 4079-4086.	0.8	55
61	Disparity for a newly identified minor histocompatibility antigen, HA-8, correlates with acute graft-versus -host disease after haematopoietic stem cell transplantation from an HLA-identical sibling. British Journal of Haematology, 2003, 123, 671-675.	2.5	49
62	Immune Responses to the HLA-A*0201-Restricted Epitopes of Tyrosinase and Glycoprotein 100 Enable Control of Melanoma Outgrowth in HLA-A*0201-Transgenic Mice. Journal of Immunology, 2001, 167, 4853-4860.	0.8	48
63	Insights into Tumor-Associated Tertiary Lymphoid Structures: Novel Targets for Antitumor Immunity and Cancer Immunotherapy. Cancer Immunology Research, 2020, 8, 1338-1345.	3.4	44
64	MHC-restricted phosphopeptide antigens: preclinical validation and first-in-humans clinical trial in participants with high-risk melanoma. , 2020, 8, e000262.		44
65	Identification by Mass Spectrometry of CD8+-T-Cell Mycobacterium tuberculosis Epitopes within the Rv0341 Gene Product. Infection and Immunity, 2002, 70, 2926-2932.	2.2	43
66	Peripheral Tissue Homing Receptor Control of NaÃ ⁻ ve, Effector, and Memory CD8 T Cell Localization in Lymphoid and Non-Lymphoid Tissues. Frontiers in Immunology, 2013, 4, 241.	4.8	42
67	The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status. Oncotarget, 2017, 8, 54160-54172.	1.8	42
68	Processing of a Class I-Restricted Epitope from Tyrosinase Requires Peptide N-Glycanase and the Cooperative Action of Endoplasmic Reticulum Aminopeptidase 1 and Cytosolic Proteases. Journal of Immunology, 2006, 177, 5440-5450.	0.8	40
69	Regulation of T-cell Tolerance by Lymphatic Endothelial Cells. Journal of Clinical & Cellular Immunology, 2014, 05, .	1.5	40
70	Regulated Folding of Tyrosinase in the Endoplasmic Reticulum Demonstrates That Misfolded Full-Length Proteins Are Efficient Substrates for Class I Processing and Presentation. Journal of Immunology, 2005, 174, 2544-2551.	0.8	39
71	MHC Class II Presentation of gp100 Epitopes in Melanoma Cells Requires the Function of Conventional Endosomes and Is Influenced by Melanosomes. Journal of Immunology, 2008, 181, 7843-7852.	0.8	39
72	Heterogeneity in tertiary lymphoid structure B-cells correlates with patient survival in metastatic		39

melanoma. , 2021, 9, e002273.

#	Article	IF	CITATIONS
73	Antibiotics Drive Microbial Imbalance and Vitiligo Development in Mice. Journal of Investigative Dermatology, 2020, 140, 676-687.e6.	0.7	38
74	Structural Basis for the Presentation of Tumor-Associated MHC Class II-Restricted Phosphopeptides to CD4+ T Cells. Journal of Molecular Biology, 2010, 399, 596-603.	4.2	37
75	Secondary anchor polymorphism in the HA-1 minor histocompatibility antigen critically affects MHC stability and TCR recognition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3889-3894.	7.1	36
76	Targeting allergen to FcÎ ³ RI reveals a novel TH2 regulatory pathway linked to thymic stromal lymphopoietin receptor. Journal of Allergy and Clinical Immunology, 2010, 125, 247-256.e8.	2.9	36
77	Comparative Transcriptomic Analysis Identifies a Range of Immunologically Related Functional Elaborations of Lymph Node Associated Lymphatic and Blood Endothelial Cells. Frontiers in Immunology, 2019, 10, 816.	4.8	35
78	Identification and Characterization of Complex Glycosylated Peptides Presented by the MHC Class II Processing Pathway in Melanoma. Journal of Proteome Research, 2017, 16, 228-237.	3.7	34
79	Peptide and Dendritic Cell Vaccines. Clinical Cancer Research, 2006, 12, 2342s-2345s.	7.0	30
80	Dendritic Cell Immunization Route Determines Integrin Expression and Lymphoid and Nonlymphoid Tissue Distribution of CD8 T Cells. Journal of Immunology, 2007, 178, 1512-1522.	0.8	30
81	Differential Expression of Homing Receptor Ligands on Tumor-Associated Vasculature that Control CD8 Effector T-cell Entry. Cancer Immunology Research, 2017, 5, 1062-1073.	3.4	29
82	Lipopeptide-based melanoma cancer vaccine induced a strong MART-27-35-cytotoxic T lymphocyte response in a preclinal study. International Journal of Cancer, 2002, 98, 221-227.	5.1	28
83	N-Glycosylation Enhances Presentation of a MHC Class I-Restricted Epitope from Tyrosinase. Journal of Immunology, 2009, 182, 4830-4835.	0.8	28
84	Regulatory T cells and vasectomy. Journal of Reproductive Immunology, 2013, 100, 66-75.	1.9	28
85	MHC-Restricted Phosphopeptides from Insulin Receptor Substrate-2 and CDC25b Offer Broad-Based Immunotherapeutic Agents for Cancer. Cancer Research, 2014, 74, 6784-6795.	0.9	28
86	Immune responses in a mouse model of vitiligo with spontaneous epidermal de―and repigmentation. Pigment Cell and Melanoma Research, 2014, 27, 1075-1085.	3.3	27
87	Targeting Fel d 1 to FcÎ ³ RI induces a novel variation of the TH2 response in subjects with cat allergy. Journal of Allergy and Clinical Immunology, 2008, 121, 756-762.e4.	2.9	25
88	Peripheral Tissue Homing Receptors Enable T Cell Entry into Lymph Nodes and Affect the Anatomical Distribution of Memory Cells. Journal of Immunology, 2013, 191, 2412-2425.	0.8	25
89	Immunomodulation of intracranial melanoma in response to blood-tumor barrier opening with focused ultrasound. Theranostics, 2020, 10, 8821-8833.	10.0	25
90	An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell, 2022, 40, 524-544.e5.	16.8	23

#	Article	IF	CITATIONS
91	Identification of Novel and Widely Expressed Cancer/Testis Gene Isoforms That Elicit Spontaneous Cytotoxic T-Lymphocyte Reactivity to Melanoma. Cancer Research, 2004, 64, 1157-1163.	0.9	21
92	Tyrosinase Degradation via Two Pathways during Reverse Translocation to the Cytosol. Biochemical and Biophysical Research Communications, 2001, 285, 313-319.	2.1	20
93	The contributions of mass spectrometry to understanding of immune recognition by T lymphocytes. International Journal of Mass Spectrometry, 2007, 259, 32-39.	1.5	20
94	Mass Spectrometric Analysis of Peptides Associated with the Human Class I MHC Molecules HLA-A2.1 and HLA-B7 and Identification of Structural Features that Determine Binding. Chemical Immunology and Allergy, 1993, 57, 39-62.	1.7	19
95	Limited Infiltration of Exogenous Dendritic Cells and Naive T Cells Restricts Immune Responses in Peripheral Lymph Nodes. Journal of Immunology, 2006, 176, 4535-4542.	0.8	19
96	Strategies and challenges in eliciting immunity to melanoma. Immunological Reviews, 2008, 222, 28-42.	6.0	19
97	Pseudomonas Exotoxin-Mediated Delivery of Exogenous Antigens to MHC Class I and Class II Processing Pathways. Cellular Immunology, 2000, 203, 75-83.	3.0	18
98	Identification and Characterization of Tertiary Lymphoid Structures in Murine Melanoma. Methods in Molecular Biology, 2018, 1845, 241-257.	0.9	18
99	Mass Spectrometric Analysis of Peptides Associated with the Human Class I MHC Molecules HLA-A2.1 and HLA-B7 and Identification of Structural Features that Determine Binding. Chemical Immunology and Allergy, 1993, 57, 39-62.	1.7	17
100	Activated CD8 T Cells Redistribute to Antigen-Free Lymph Nodes and Exhibit Effector and Memory Characteristics. Journal of Immunology, 2008, 181, 1814-1824.	0.8	17
101	Conservation of minor histocompatibility antigens between human and non-human primates. European Journal of Immunology, 1996, 26, 2680-2685.	2.9	16
102	Competition Among Peptides in Melanoma Vaccines for Binding to MHC Molecules. Journal of Immunotherapy, 2004, 27, 425-431.	2.4	14
103	The Barrier Molecules Junction Plakoglobin, Filaggrin, and Dystonin Play Roles in Melanoma Growth and Angiogenesis. Annals of Surgery, 2019, 270, 712-722.	4.2	14
104	Patterns of immune-cell infiltration in murine models of melanoma: roles of antigen and tissue site in creating inflamed tumors. Cancer Immunology, Immunotherapy, 2019, 68, 1121-1132.	4.2	13
105	Identification of a shared epitope recognized by melanoma-specific, HLA-A3-restricted cytotoxic T lymphocytes. Immunology Letters, 2003, 90, 131-135.	2.5	11
106	Formation and phenotypic characterization of CD49a, CD49b and CD103 expressing CD8 T cell populations in human metastatic melanoma. OncoImmunology, 2018, 7, e1490855.	4.6	10
107	Preventing the Spontaneous Modification of an HLA-A2-Restricted Peptide at an N-Terminal Glutamine or an Internal Cysteine Residue Enhances Peptide Antigenicity. Journal of Immunotherapy, 2004, 27, 177-183.	2.4	9
108	Differential Expression of CD49a and CD49b Determines Localization and Function of Tumor-Infiltrating CD8+ T Cells. Cancer Immunology Research, 2021, 9, 583-597.	3.4	9

#	Article	IF	CITATIONS
109	Associations of immune cell homing gene signatures and infiltrates of lymphocyte subsets in human melanomas: discordance with CD163+ myeloid cell infiltrates. Journal of Translational Medicine, 2021, 19, 371.	4.4	9
110	Direct identification of tumor-associated peptide antigens. Seminars in Immunopathology, 1996, 18, 171-183.	4.0	8
111	Creating new peptide antigens by slicing and splicing proteins. Nature Immunology, 2004, 5, 128-129.	14.5	6
112	Characteristics of Immune Memory and Effector Activity to Cancer-Expressed MHC Class I Phosphopeptides Differ in Healthy Donors and Ovarian Cancer Patients. Cancer Immunology Research, 2021, 9, 1327-1341.	3.4	4
113	Immune Mechanisms Orchestrate Tertiary Lymphoid Structures in Tumors Via Cancer-Associated Fibroblasts. SSRN Electronic Journal, 0, , .	0.4	4
114	Phospho-β-catenin expression in primary and metastatic melanomas and in tumor-free visceral tissues, and associations with expression of PD-L1 and PD-L2. Pathology Research and Practice, 2021, 224, 153527.	2.3	2
115	Determination of Intronic Sequences Adjacent to an Exon Using Polymerase Chain Reaction and Genomic DNA Library Constructed by TA Cloning. Analytical Biochemistry, 2001, 289, 289-292.	2.4	1
116	Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. , 2001, 92, 703.		1
117	Adenosine A2Areceptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. Journal of Cell Biology, 2006, 175, i9-i9.	5.2	1
118	Immune Targeting of the Phosphoproteome in Lymphoma and Leukemia Blood, 2007, 110, 285-285.	1.4	1
119	Tumorâ€associated MHC IIâ€restricted phosphopeptides: New targets for immune recognition. FASEB Journal, 2008, 22, 1079.1.	0.5	1
120	Abstract B14: A phosphorylated β-catenin peptide that is presented by HLA-A2 MHC molecules generates strong phosphospecific T cell responses against melanoma. , 2010, , .		0
121	Immunologically Targeting the Leukaemia Phosphoproteome. Blood, 2010, 116, 1016-1016.	1.4	Ο
122	Abstract 512: Leukemia-specific immunity in healthy individuals and patients post-transplant targets phosphorylated tumor antigens. , 2012, , .		0
123	Abstract 1584: MHC-restricted phosphopeptides as broad-based immunotherapeutic targets for cancer. , 2012, , .		Ο
124	Abstract IA23: T cell trafficking in lymphoid and non-lymphoid tissues. , 2015, , .		0
125	Effect of cancer vaccine formulation on synergy with anti-CTLA-4 and anti-PD-L1 checkpoint blockade therapy of cancer Journal of Clinical Oncology, 2016, 34, 3094-3094.	1.6	0
126	Abstract A031: Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. , 2016, , .		0

#	Article	IF	CITATIONS
127	Abstract 4609: Agenus' next generation cancer vaccine platforms. , 2017, , .		0
128	Abstract B68: Pre-existing immune memory to cancer-associated phosphopeptides in healthy donors. , 2020, , .		0

9