
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3228614/publications.pdf Version: 2024-02-01

IIIIIIN DENC

#	Article	IF	CITATIONS
1	Water-soluble peroxotitanium complex: A novel strategy to prepare Fe2O3/Fe2TiO5 photoanode with enhanced water oxidation. Journal of Alloys and Compounds, 2022, 898, 162930.	5.5	8
2	Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Research, 2022, 15, 6026-6035.	10.4	24
3	Ti3C2 MXene derived carbon-doped TiO2 multilayers anchored with Fe2O3 nanoparticles as anode for enhanced lithium-ion storage. Journal of Alloys and Compounds, 2022, 918, 165697.	5.5	9
4	Improved Water Oxidation of Fe ₂ O ₃ /Fe ₂ TiO ₅ Photoanode by Functionalizing with a Hydrophilic Organic Hole Storage Overlayer. ACS Catalysis, 2022, 12, 7833-7842.	11.2	36
5	Unraveling the role of Ti3C2 MXene underlayer for enhanced photoelectrochemical water oxidation of hematite photoanodes. Journal of Energy Chemistry, 2021, 52, 147-154.	12.9	21
6	Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia. Green Energy and Environment, 2021, 6, 538-545.	8.7	38
7	Large-scale production of ultrathin carbon nitride-based photocatalysts for high-yield hydrogen evolution. Applied Catalysis B: Environmental, 2021, 281, 119475.	20.2	84
8	N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation. Journal of Colloid and Interface Science, 2021, 585, 660-667.	9.4	12
9	In-situ surface reconstruction in Pt and P co-treated hematite for enhanced water oxidation. Chemical Engineering Journal, 2021, 413, 127416.	12.7	9
10	One-step in-situ formation of TiO2 nanosheets interconnected hematite photoanode for enhanced water oxidation. Applied Surface Science, 2021, 560, 150036.	6.1	6
11	Black phosphorus nanoflakes decorated hematite photoanode with functional phosphate bridges for enhanced water oxidation. Chemical Engineering Journal, 2021, 425, 131500.	12.7	10
12	Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 261, 118233.	20.2	68
13	Functional principle of the synergistic effect of co-loaded Co-Pi and FeOOH on Fe2O3 photoanodes for photoelectrochemical water oxidation. Chinese Journal of Catalysis, 2020, 41, 1761-1771.	14.0	35
14	In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Applied Catalysis B: Environmental, 2020, 269, 118760.	20.2	147
15	Understanding Photoelectrochemical Water Oxidation with X-ray Absorption Spectroscopy. ACS Energy Letters, 2020, 5, 975-993.	17.4	52
16	Bi-functional Fe2ZrO5 modified hematite photoanode for efficient solar water splitting. Applied Catalysis B: Environmental, 2020, 269, 118768.	20.2	38
17	Accelerating the Hole Mobility of Graphitic Carbon Nitride for Photocatalytic Hydrogen Evolution via 2D/2D Heterojunction Structural Advantages and Ni(OH) ₂ Characteristic. Solar Rrl, 2020, 4, 1900538.	5.8	28
18	Fe2(MoO4)3 modified hematite with oxygen vacancies for high-efficient water oxidation. Chemical Engineering Journal, 2020, 395, 125127.	12.7	18

#	Article	IF	CITATIONS
19	Novel broad-spectrum-driven oxygen-linked band and porous defect co-modified orange carbon nitride for photodegradation of Bisphenol A and 2-Mercaptobenzothiazole. Journal of Hazardous Materials, 2020, 396, 122659.	12.4	36
20	Co-doped carbon layer to lower the onset potential of hematite for solar water oxidation. Applied Catalysis B: Environmental, 2019, 258, 117962.	20.2	28
21	Efficient photocatalytic hydrogen evolution mediated by defect-rich 1T-PtS ₂ atomic layer nanosheet modified mesoporous graphitic carbon nitride. Journal of Materials Chemistry A, 2019, 7, 18906-18914.	10.3	44
22	Graphene quantum dots modified flower like Bi2WO6 for enhanced photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2019, 557, 498-505.	9.4	78
23	Hierarchical TiO2/Fe2O3 heterojunction photoanode for improved photoelectrochemical water oxidation. Journal of Electroanalytical Chemistry, 2019, 835, 287-292.	3.8	37
24	Boosting the performance of hematite photoanodes for solar water oxidation by synergistic W-incorporation and Zr-passivation. International Journal of Hydrogen Energy, 2019, 44, 16436-16442.	7.1	9
25	Cryo-mediated liquid-phase exfoliated 2D BP coupled with 2D C3N4 to photodegradate organic pollutants and simultaneously generate hydrogen. Applied Surface Science, 2019, 490, 117-123.	6.1	26
26	Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. Journal of Materials Chemistry A, 2019, 7, 14291-14301.	10.3	37
27	Iceâ€Assisted Synthesis of Black Phosphorus Nanosheets as a Metalâ€Free Photocatalyst: 2D/2D Heterostructure for Broadband H ₂ Evolution. Advanced Functional Materials, 2019, 29, 1902486.	14.9	116
28	Carbon coated porous Co3O4 nanosheets derived from cotton fibers as anodes for superior lithium ion batteries. Applied Surface Science, 2019, 475, 446-452.	6.1	36
29	Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2. Applied Catalysis B: Environmental, 2019, 243, 330-336.	20.2	105
30	Synergistic Cu@CoOx core-cage structure on carbon layers as highly active and durable electrocatalysts for methanol oxidation. Applied Catalysis B: Environmental, 2019, 244, 795-801.	20.2	42
31	Boron-passivated surface Fe ^(iv) defects in hematite for highly efficient water oxidation. Nanoscale, 2018, 10, 7033-7039.	5.6	25
32	A multidimensional In ₂ S ₃ –CuInS ₂ heterostructure for photocatalytic carbon dioxide reduction. Inorganic Chemistry Frontiers, 2018, 5, 3163-3169.	6.0	67
33	A Specifically Exposed Cobalt Oxide/Carbon Nitride 2D Heterostructure for Carbon Dioxide Photoreduction. Industrial & Engineering Chemistry Research, 2018, 57, 17394-17400.	3.7	76
34	Photocharged Fe ₂ TiO ₅ /Fe ₂ O ₃ Photoanode for Enhanced Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2018, 122, 29268-29273.	3.1	24
35	Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorineâ€Đoped FeOOH and FeNiOOH as Dual Cocatalysts. ChemSusChem, 2018, 11, 3783-3789.	6.8	54
36	Atomic-scale understanding of the electronic structure-crystal facets synergy of nanopyramidal CoPi/BiVO4 hybrid photocatalyst for efficient solar water oxidation. Nano Energy, 2018, 53, 483-491.	16.0	31

#	Article	IF	CITATIONS
37	Graphene oxide-modified LaVO ₄ nanocomposites with enhanced photocatalytic degradation efficiency of antibiotics. Inorganic Chemistry Frontiers, 2018, 5, 2818-2828.	6.0	31
38	Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst. Applied Catalysis B: Environmental, 2018, 237, 166-174.	20.2	46
39	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ O ₃ /gâ€C ₃ N ₄ Zâ€6cheme Catalysts. Advanced Energ Materials, 2017, 7, 1700025.	y 19.5	664
40	Lowering the Onset Potential of Fe ₂ TiO ₅ /Fe ₂ O ₃ Photoanodes by Interface Structures: F- and Rh-Based Treatments. ACS Catalysis, 2017, 7, 4062-4069.	11.2	61
41	γ-Fe ₂ O ₃ @CNTs Anode Materials for Lithium Ion Batteries Investigated by Electron Energy Loss Spectroscopy. Chemistry of Materials, 2017, 29, 3499-3506.	6.7	73
42	Fe2TiO5-incorporated hematite with surface P-modification for high-efficiency solar water splitting. Nano Energy, 2017, 32, 526-532.	16.0	50
43	High-Efficiency Broadband C ₃ N ₄ Photocatalysts: Synergistic Effects from Upconversion and Plasmons. ACS Catalysis, 2017, 7, 6225-6234.	11.2	144
44	Loading the FeNiOOH cocatalyst on Pt-modified hematite nanostructures for efficient solar water oxidation. Physical Chemistry Chemical Physics, 2016, 18, 10453-10458.	2.8	55
45	Hydrogenated hematite nanostructures for high-efficiency solar water oxidation. RSC Advances, 2016, 6, 92206-92212.	3.6	6
46	Cu _x Co _{1â^'<i>x</i>} O Nanoparticles on Graphene Oxide as A Synergistic Catalyst for Highâ€Efficiency Hydrolysis of Ammonia–Borane. Angewandte Chemie - International Edition, 2016, 55, 11950-11954.	13.8	186
47	Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy, 2016, 27, 138-146.	16.0	379
48	Cumulative effect of Fe 2 O 3 on TiO 2 nanotubes via atomic layer deposition with enhanced lithium ion storage performance. Applied Surface Science, 2016, 369, 314-319.	6.1	21
49	Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347, 970-974.	12.6	3,803
50	Thin-Layer Fe ₂ TiO ₅ on Hematite for Efficient Solar Water Oxidation. ACS Nano, 2015, 9, 5348-5356.	14.6	121
51	Depth-reduction induced low onset potential of hematite photoanodes for solar water oxidation. RSC Advances, 2015, 5, 31086-31090.	3.6	7
52	Carbon-coated α-Fe ₂ O ₃ nanostructures for efficient anode of Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 5183-5188.	10.3	67
53	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	12.8	466
54	Synchrotron Soft Xâ€ray Absorption Spectroscopy Study of Carbon and Silicon Nanostructures for Energy Applications. Advanced Materials, 2014, 26, 7786-7806.	21.0	84

#	Article	IF	CITATIONS
55	Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation. Journal of Materials Chemistry A, 2014, 2, 6727.	10.3	87
56	Thickness effect of hematite nanostructures prepared by hydrothermal method for solar water splitting. Applied Surface Science, 2014, 320, 213-217.	6.1	34
57	Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. Journal of Materials Chemistry A, 2014, 2, 2491.	10.3	128
58	Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst. Carbon, 2013, 52, 559-564.	10.3	104
59	Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energy and Environmental Science, 2013, 6, 1965.	30.8	111
60	Ti-doped hematite nanostructures for solar water splitting with high efficiency. Journal of Applied Physics, 2012, 112, .	2.5	106
61	Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy. Carbon, 2012, 50, 335-338.	10.3	111
62	Direct observation and spectroscopy of nanoscaled carboxylated carbonaceous fragments coated on carbon nanotubes. Chemical Communications, 2011, 47, 8373.	4.1	25