Jiujun Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3228614/publications.pdf

Version: 2024-02-01

109321 118850 8,484 62 35 62 h-index citations g-index papers 62 62 62 11243 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347, 970-974.	12.6	3,803
2	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ O ₃ /gâ€C ₃ N ₄ Zâ€Scheme Catalysts. Advanced Energ Materials, 2017, 7, 1700025.	gy 19.5	664
3	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	12.8	466
4	Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy, 2016, 27, 138-146.	16.0	379
5	Cu _x Co _{1â^'<i>x</i>} O Nanoparticles on Graphene Oxide as A Synergistic Catalyst for Highâ€Efficiency Hydrolysis of Ammoniaâ€"Borane. Angewandte Chemie - International Edition, 2016, 55, 11950-11954.	13.8	186
6	In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Applied Catalysis B: Environmental, 2020, 269, 118760.	20.2	147
7	High-Efficiency Broadband C ₃ N ₄ Photocatalysts: Synergistic Effects from Upconversion and Plasmons. ACS Catalysis, 2017, 7, 6225-6234.	11.2	144
8	Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. Journal of Materials Chemistry A, 2014, 2, 2491.	10.3	128
9	Thin-Layer Fe ₂ TiO ₅ on Hematite for Efficient Solar Water Oxidation. ACS Nano, 2015, 9, 5348-5356.	14.6	121
10	Iceâ€Assisted Synthesis of Black Phosphorus Nanosheets as a Metalâ€Free Photocatalyst: 2D/2D Heterostructure for Broadband H ₂ Evolution. Advanced Functional Materials, 2019, 29, 1902486.	14.9	116
11	Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy. Carbon, 2012, 50, 335-338.	10.3	111
12	Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energy and Environmental Science, 2013, 6, 1965.	30.8	111
13	Ti-doped hematite nanostructures for solar water splitting with high efficiency. Journal of Applied Physics, 2012, 112, .	2.5	106
14	Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2. Applied Catalysis B: Environmental, 2019, 243, 330-336.	20.2	105
15	Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst. Carbon, 2013, 52, 559-564.	10.3	104
16	Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation. Journal of Materials Chemistry A, 2014, 2, 6727.	10.3	87
17	Synchrotron Soft Xâ€ray Absorption Spectroscopy Study of Carbon and Silicon Nanostructures for Energy Applications. Advanced Materials, 2014, 26, 7786-7806.	21.0	84
18	Large-scale production of ultrathin carbon nitride-based photocatalysts for high-yield hydrogen evolution. Applied Catalysis B: Environmental, 2021, 281, 119475.	20.2	84

#	Article	IF	Citations
19	Graphene quantum dots modified flower like Bi2WO6 for enhanced photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2019, 557, 498-505.	9.4	78
20	A Specifically Exposed Cobalt Oxide/Carbon Nitride 2D Heterostructure for Carbon Dioxide Photoreduction. Industrial & Engineering Chemistry Research, 2018, 57, 17394-17400.	3.7	76
21	\hat{I}^3 -Fe ₂ O ₃ @CNTs Anode Materials for Lithium Ion Batteries Investigated by Electron Energy Loss Spectroscopy. Chemistry of Materials, 2017, 29, 3499-3506.	6.7	73
22	Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 261, 118233.	20.2	68
23	Carbon-coated î±-Fe ₂ O ₃ nanostructures for efficient anode of Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 5183-5188.	10.3	67
24	A multidimensional In ₂ S ₃ â€"CulnS ₂ heterostructure for photocatalytic carbon dioxide reduction. Inorganic Chemistry Frontiers, 2018, 5, 3163-3169.	6.0	67
25	Lowering the Onset Potential of Fe ₂ TiO ₅ /Fe ₂ O ₃ Photoanodes by Interface Structures: F- and Rh-Based Treatments. ACS Catalysis, 2017, 7, 4062-4069.	11.2	61
26	Loading the FeNiOOH cocatalyst on Pt-modified hematite nanostructures for efficient solar water oxidation. Physical Chemistry Chemical Physics, 2016, 18, 10453-10458.	2.8	55
27	Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorineâ€Doped FeOOH and FeNiOOH as Dual Cocatalysts. ChemSusChem, 2018, 11, 3783-3789.	6.8	54
28	Understanding Photoelectrochemical Water Oxidation with X-ray Absorption Spectroscopy. ACS Energy Letters, 2020, 5, 975-993.	17.4	52
29	Fe2TiO5-incorporated hematite with surface P-modification for high-efficiency solar water splitting. Nano Energy, 2017, 32, 526-532.	16.0	50
30	Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst. Applied Catalysis B: Environmental, 2018, 237, 166-174.	20.2	46
31	Efficient photocatalytic hydrogen evolution mediated by defect-rich 1T-PtS ₂ atomic layer nanosheet modified mesoporous graphitic carbon nitride. Journal of Materials Chemistry A, 2019, 7, 18906-18914.	10.3	44
32	Synergistic Cu@CoOx core-cage structure on carbon layers as highly active and durable electrocatalysts for methanol oxidation. Applied Catalysis B: Environmental, 2019, 244, 795-801.	20.2	42
33	Bi-functional Fe2ZrO5 modified hematite photoanode for efficient solar water splitting. Applied Catalysis B: Environmental, 2020, 269, 118768.	20.2	38
34	Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia. Green Energy and Environment, 2021, 6, 538-545.	8.7	38
35	Hierarchical TiO2/Fe2O3 heterojunction photoanode for improved photoelectrochemical water oxidation. Journal of Electroanalytical Chemistry, 2019, 835, 287-292.	3.8	37
36	Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. Journal of Materials Chemistry A, 2019, 7, 14291-14301.	10.3	37

#	Article	IF	Citations
37	Carbon coated porous Co3O4 nanosheets derived from cotton fibers as anodes for superior lithium ion batteries. Applied Surface Science, 2019, 475, 446-452.	6.1	36
38	Novel broad-spectrum-driven oxygen-linked band and porous defect co-modified orange carbon nitride for photodegradation of Bisphenol A and 2-Mercaptobenzothiazole. Journal of Hazardous Materials, 2020, 396, 122659.	12.4	36
39	Improved Water Oxidation of Fe ₂ O ₃ /Fe ₂ TiO ₅ Photoanode by Functionalizing with a Hydrophilic Organic Hole Storage Overlayer. ACS Catalysis, 2022, 12, 7833-7842.	11.2	36
40	Functional principle of the synergistic effect of co-loaded Co-Pi and FeOOH on Fe2O3 photoanodes for photoelectrochemical water oxidation. Chinese Journal of Catalysis, 2020, 41, 1761-1771.	14.0	35
41	Thickness effect of hematite nanostructures prepared by hydrothermal method for solar water splitting. Applied Surface Science, 2014, 320, 213-217.	6.1	34
42	Atomic-scale understanding of the electronic structure-crystal facets synergy of nanopyramidal CoPi/BiVO4 hybrid photocatalyst for efficient solar water oxidation. Nano Energy, 2018, 53, 483-491.	16.0	31
43	Graphene oxide-modified LaVO ₄ nanocomposites with enhanced photocatalytic degradation efficiency of antibiotics. Inorganic Chemistry Frontiers, 2018, 5, 2818-2828.	6.0	31
44	Co-doped carbon layer to lower the onset potential of hematite for solar water oxidation. Applied Catalysis B: Environmental, 2019, 258, 117962.	20.2	28
45	Accelerating the Hole Mobility of Graphitic Carbon Nitride for Photocatalytic Hydrogen Evolution via 2D/2D Heterojunction Structural Advantages and Ni(OH) ₂ Characteristic. Solar Rrl, 2020, 4, 1900538.	5.8	28
46	Cryo-mediated liquid-phase exfoliated 2D BP coupled with 2D C3N4 to photodegradate organic pollutants and simultaneously generate hydrogen. Applied Surface Science, 2019, 490, 117-123.	6.1	26
47	Direct observation and spectroscopy of nanoscaled carboxylated carbonaceous fragments coated on carbon nanotubes. Chemical Communications, 2011, 47, 8373.	4.1	25
48	Boron-passivated surface Fe $<$ sup $>$ (iv) $<$ /sup $>$ defects in hematite for highly efficient water oxidation. Nanoscale, 2018, 10, 7033-7039.	5.6	25
49	Photocharged Fe ₂ TiO ₅ /Fe ₂ O ₃ Photoanode for Enhanced Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2018, 122, 29268-29273.	3.1	24
50	Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Research, 2022, 15, 6026-6035.	10.4	24
51	Cumulative effect of Fe 2 O 3 on TiO 2 nanotubes via atomic layer deposition with enhanced lithium ion storage performance. Applied Surface Science, 2016, 369, 314-319.	6.1	21
52	Unraveling the role of Ti3C2 MXene underlayer for enhanced photoelectrochemical water oxidation of hematite photoanodes. Journal of Energy Chemistry, 2021, 52, 147-154.	12.9	21
53	Fe2(MoO4)3 modified hematite with oxygen vacancies for high-efficient water oxidation. Chemical Engineering Journal, 2020, 395, 125127.	12.7	18
54	N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation. Journal of Colloid and Interface Science, 2021, 585, 660-667.	9.4	12

#	Article	IF	CITATIONS
55	Black phosphorus nanoflakes decorated hematite photoanode with functional phosphate bridges for enhanced water oxidation. Chemical Engineering Journal, 2021, 425, 131500.	12.7	10
56	Boosting the performance of hematite photoanodes for solar water oxidation by synergistic W-incorporation and Zr-passivation. International Journal of Hydrogen Energy, 2019, 44, 16436-16442.	7.1	9
57	In-situ surface reconstruction in Pt and P co-treated hematite for enhanced water oxidation. Chemical Engineering Journal, 2021, 413, 127416.	12.7	9
58	Ti3C2 MXene derived carbon-doped TiO2 multilayers anchored with Fe2O3 nanoparticles as anode for enhanced lithium-ion storage. Journal of Alloys and Compounds, 2022, 918, 165697.	5.5	9
59	Water-soluble peroxotitanium complex: A novel strategy to prepare Fe2O3/Fe2TiO5 photoanode with enhanced water oxidation. Journal of Alloys and Compounds, 2022, 898, 162930.	5.5	8
60	Depth-reduction induced low onset potential of hematite photoanodes for solar water oxidation. RSC Advances, 2015, 5, 31086-31090.	3.6	7
61	Hydrogenated hematite nanostructures for high-efficiency solar water oxidation. RSC Advances, 2016, 6, 92206-92212.	3.6	6
62	One-step in-situ formation of TiO2 nanosheets interconnected hematite photoanode for enhanced water oxidation. Applied Surface Science, 2021, 560, 150036.	6.1	6