Rodomiro Ortiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3228449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The power of genomic estimated breeding values for selection when using a finite population size in genetic improvement of tetraploid potato. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	11
2	Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens. Biology, 2022, 11, 140.	2.8	31
3	Genome-Based Genotype × Environment Prediction Enhances Potato (Solanum tuberosum L.) Improvement Using Pseudo-Diploid and Polysomic Tetraploid Modeling. Frontiers in Plant Science, 2022, 13, 785196.	3.6	19
4	Transgenic Vegetable Breeding for Nutritional Quality and Health Benefits: A Review. , 2022, , 36-52.		0
5	Anthocyanin-Rich Vegetables for Human Consumption—Focus on Potato, Sweetpotato and Tomato. International Journal of Molecular Sciences, 2022, 23, 2634.	4.1	12
6	Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses. Frontiers in Genetics, 2022, 13, 848627.	2.3	7
7	Developing Germplasm and Promoting Consumption of Anthocyanin-Rich Grains for Health Benefits. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	8
8	RNA-Seq Provides Novel Genomic Resources for Noug (Guizotia abyssinica) and Reveals Microsatellite Frequency and Distribution in Its Transcriptome. Frontiers in Plant Science, 2022, 13, .	3.6	9
9	Diversity and population structure of Nordic potato cultivars and breeding clones. BMC Plant Biology, 2022, 22, .	3.6	7
10	Crop wild relatives in durum wheat breeding: Drift or thrift?. Crop Science, 2021, 61, 37-54.	1.8	26
11	First the seed: Genomic advances in seed science for improved crop productivity and food security. Crop Science, 2021, 61, 1501-1526.	1.8	6
12	Focused Identification of Germplasm Strategy (FIGS): polishing a rough diamond. Current Opinion in Insect Science, 2021, 45, 1-6.	4.4	14
13	Spray-induced gene silencing: an innovative strategy for plant trait improvement and disease control. Crop Breeding and Applied Biotechnology, 2021, 21, .	0.4	16
14	Comparison of Morphological and Genetic Characteristics of Avocados Grown in Tanzania. Genes, 2021, 12, 63.	2.4	7
15	Induced Polyploidy: A Tool for Forage Species Improvement. Agriculture (Switzerland), 2021, 11, 210.	3.1	9
16	Understanding the Sorghum–Colletotrichum sublineola Interactions for Enhanced Host Resistance. Frontiers in Plant Science, 2021, 12, 641969.	3.6	11
17	Characterization of Oilseed Crop Noug (Guizotia abyssinica) Using Agro-Morphological Traits. Agronomy, 2021, 11, 1479.	3.0	3
18	Nutritional Profile of the Ethiopian Oilseed Crop Noug (Guizotia abyssinica Cass.): Opportunities for Its Improvement as a Source for Human Nutrition. Foods, 2021, 10, 1778.	4.3	9

#	Article	IF	CITATIONS
19	Mitigating tradeoffs in plant breeding. IScience, 2021, 24, 102965.	4.1	28
20	Traits that define yield and genetic gain in East African highland banana breeding. Euphytica, 2021, 217, 1.	1.2	2
21	Novel Expressed Sequence Tag-Derived and Other Genomic Simple Sequence Repeat Markers Revealed Genetic Diversity in Ethiopian Finger Millet Landrace Populations and Cultivars. Frontiers in Plant Science, 2021, 12, 735610.	3.6	4
22	RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. Plants, 2021, 10, 1914.	3.5	17
23	A Bioinformatics Pipeline to Identify a Subset of SNPs for Genomics-Assisted Potato Breeding. Plants, 2021, 10, 30.	3.5	14
24	Insights Into the Genetic Diversity of Nordic Red Clover (Trifolium pratense) Revealed by SeqSNP-Based Genic Markers. Frontiers in Plant Science, 2021, 12, 748750.	3.6	11
25	New Strategies and Approaches for Improving Vegetable Cultivars. , 2021, , 349-381.		3
26	Heritable Variation, Genetic and Phenotypic Correlations for Tuber Traits and Host Plant Resistance to Late Blight for Potato Breeding in Scandinavian Testing Sites. Agriculture (Switzerland), 2021, 11, 1287.	3.1	10
27	Genomic-based root plasticity to enhance abiotic stress adaptation and edible yield in grain crops. Plant Science, 2020, 295, 110365.	3.6	10
28	Genetics and Cytogenetics of theÂPotato. , 2020, , 219-247.		11
29	Effect of intermittent drought on grain yield and quality of rice (<i>Oryza sativa</i> L.) grown in Rwanda. Journal of Agronomy and Crop Science, 2020, 206, 252-262.	3.5	14
30	New Transcriptome-Based SNP Markers for Noug (Guizotia abyssinica) and Their Conversion to KASP Markers for Population Genetics Analyses. Genes, 2020, 11, 1373.	2.4	16
31	Editorial: Leeway to Operate With Plant Genetic Resources. Frontiers in Plant Science, 2020, 11, 911.	3.6	4
32	QTL Mapping for Domestication-Related Characteristics in Field Cress (Lepidium campestre)—A Novel Oil Crop for the Subarctic Region. Genes, 2020, 11, 1223.	2.4	2
33	Significant progressive heterobeltiosis in banana crossbreeding. BMC Plant Biology, 2020, 20, 489.	3.6	8
34	Genetic diversity of avocado from the southern highlands of Tanzania as revealed by microsatellite markers. Hereditas, 2020, 157, 40.	1.4	9
35	Göte Turesson's research legacy to Hereditas: from the ecotype concept in plants to the analysis of landraces' diversity in crops. Hereditas, 2020, 157, 44.	1.4	1
36	Nutrient-Dense Orange-Fleshed Sweetpotato: Advances in Drought-Tolerance Breeding and Understanding of Management Practices for Sustainable Next-Generation Cropping Systems in Sub-Saharan Africa. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	37

#	Article	IF	CITATIONS
37	Advanced analytics, phenomics and biotechnology approaches to enhance genetic gains in plant breeding. Advances in Agronomy, 2020, 162, 89-142.	5.2	8
38	QTL Mapping for Resistance to Early Blight in a Tetraploid Potato Population. Agronomy, 2020, 10, 728.	3.0	20
39	Characterization of Tanzanian Avocado Using Morphological Traits. Diversity, 2020, 12, 64.	1.7	7
40	Gender and Trait Preferences for Banana Cultivation and Use in Sub-Saharan Africa: A Literature Review1. Economic Botany, 2020, 74, 226-241.	1.7	34
41	Molecular mapping and identification of quantitative trait loci for domestication traits in the field cress (Lepidium campestre L.) genome. Heredity, 2020, 124, 579-591.	2.6	3
42	Oil crops for the future. Current Opinion in Plant Biology, 2020, 56, 181-189.	7.1	38
43	High-Density Genetic Linkage Mapping of Lepidium Based on Genotyping-by-Sequencing SNPs and Segregating Contig Tag Haplotypes. Frontiers in Plant Science, 2020, 11, 448.	3.6	6
44	The exploitation of sunflower (<i>Helianthus annuus</i> L.) seed and other parts for human nutrition, medicine and the industry. Helia, 2020, 43, 167-184.	0.4	12
45	Change in Production Practices: The Role of Agri-Food and Diversified Cropping Systems. , 2019, , 36-43.		1
46	Pursuing the Potential of Heirloom Cultivars to Improve Adaptation, Nutritional, and Culinary Features of Food Crops. Agronomy, 2019, 9, 441.	3.0	32
47	Avocado Production and Local Trade in the Southern Highlands of Tanzania: A Case of an Emerging Trade Commodity from Horticulture. Agronomy, 2019, 9, 749.	3.0	21
48	Association genetics of bunch weight and its component traits in East African highland banana (Musa) Tj ETQq0	0 g.rgBT /	/Overlock 10 1
49	Crossbreeding East African Highland Bananas: Lessons Learnt Relevant to the Botany of the Crop After 21 Years of Genetic Enhancement. Frontiers in Plant Science, 2019, 10, 81.	3.6	40
50	High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy, 2019, 9, 258.	3.0	144
51	Durum Wheat (Triticum durum Desf.): Origin, Cultivation and Potential Expansion in Sub-Saharan Africa. Agronomy, 2019, 9, 263.	3.0	77
52	Promising High-Yielding Tetraploid Plantain-Bred Hybrids in West Africa. International Journal of Agronomy, 2019, 2019, 1-8.	1.2	19
53	Concurrent Drought and Temperature Stress in Rice—A Possible Result of the Predicted Climate Change: Effects on Yield Attributes, Eating Characteristics, and Health Promoting Compounds. International Journal of Environmental Research and Public Health, 2019, 16, 1043.	2.6	48
54	Heterobeltiosis in Banana and Genetic Gains through Crossbreeding. Proceedings (mdpi), 2019, 36, 193.	0.2	0

#	Article	IF	CITATIONS
55	Field cress genome mapping: Integrating linkage and comparative maps with cytogenetic analysis for rDNA carrying chromosomes. Scientific Reports, 2019, 9, 17028.	3.3	5
56	Mineral composition and nutritive value of Festuca ecotypes originated from the highland region of Bolivia and cultivars from Argentina. Australian Journal of Crop Science, 2019, , 1650-1658.	0.3	2
57	Advances in Transgenic Vegetable and Fruit Breeding. , 2019, , 1-46.		0
58	Advanced Breeding Tools in Vegetable Crops. , 2019, , 1-28.		0
59	Suitability of existing Musa morphological descriptors to characterize East African highland â€~matooke' bananas. Genetic Resources and Crop Evolution, 2018, 65, 645-657.	1.6	8
60	A Life in Horticulture and Plant Breeding. , 2018, , 291-360.		0
61	A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region. Physiologia Plantarum, 2018, 164, 442-451.	5.2	36
62	Heat Tolerance of Durum Wheat (Tritcum durum Desf.) Elite Germplasm Tested along the Senegal River. Journal of Agricultural Science, 2018, 10, 217.	0.2	14
63	Measuring the impact of plant breeding on sub-Saharan African staple crops. Outlook on Agriculture, 2018, 47, 163-180.	3.4	26
64	Cross the Best with the Best, and Select the Best: HELP in Breeding Selfing Crops. Crop Science, 2018, 58, 17-30.	1.8	30
65	Quality and Grain Yield Attributes of Rwandan Rice (<i>Oryza sativa</i> L.) Cultivars Grown in a Biotron Applying Two NPK Levels. Journal of Food Quality, 2018, 2018, 1-12.	2.6	5
66	Identification of genes regulating traits targeted for domestication of field cress (Lepidium) Tj ETQq0 0 0 rgBT /0	Overlock 1	.0 Tf 50 302 T
67	Genetic Basis and Breeding Perspectives of Grain Iron and Zinc Enrichment in Cereals. Frontiers in Plant Science, 2018, 9, 937.	3.6	117
68	Using Biotechnology-Led Approaches to Uplift Cereal and Food Legume Yields in Dryland Environments. Frontiers in Plant Science, 2018, 9, 1249.	3.6	34
69	Durum Wheat Breeding: In the Heat of the Senegal River. Agriculture (Switzerland), 2018, 8, 99.	3.1	11
70	Nutritional variation in sorghum [Sorghum bicolor (L.) Moench] accessions from southern Africa revealed by protein and mineral composition. Journal of Cereal Science, 2018, 83, 123-129.	3.7	19
71	Genetic diversity in sorghum [Sorghum bicolor (L.) Moench] germplasm from Southern Africa as revealed by microsatellite markers and agro-morphological traits. Genetic Resources and Crop Evolution, 2017, 64, 599-610.	1.6	19
72	Late blight and virus host-plant resistances, crossing ability and glycoalkaloids in Nordic potato germplasm. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 628-636.	0.6	3

#	Article	IF	CITATIONS
73	Genoproteomics-assisted improvement of <i>Andrographis paniculata</i> : toward a promising molecular and conventional breeding platform for autogamous plants affecting the pharmaceutical industry. Critical Reviews in Biotechnology, 2017, 37, 803-816.	9.0	14
74	Diversifying Food Systems in the Pursuit of Sustainable Food Production and Healthy Diets. Trends in Plant Science, 2017, 22, 842-856.	8.8	169
75	Genomic Selection: State of theÂArt. , 2017, , 19-54.		4
76	Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange. Frontiers in Plant Science, 2017, 8, 1277.	3.6	178
77	Editorial: Plant Phenotyping and Phenomics for Plant Breeding. Frontiers in Plant Science, 2017, 8, 2181.	3.6	65
78	Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes. Frontiers in Plant Science, 2017, 8, 1461.	3.6	60
79	Putting Plant Genetic Diversity and Variability at Work for Breeding: Hybrid Rice Suitability in West Africa. Diversity, 2017, 9, 27.	1.7	5
80	Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society, 2017, 22, .	2.3	576
81	Microbiome, Prebiotics, and Human Health. , 2016, , 335-343.		1
82	² Molecular and Genomic Tools Provide Insights on Crop Domestication and Evolution. Advances in Agronomy, 2016, 135, 181-223.	5.2	4
83	Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. Frontiers in Plant Science, 2016, 7, 763.	3.6	24
84	Global agricultural intensification during climate change: a role for genomics. Plant Biotechnology Journal, 2016, 14, 1095-1098.	8.3	221
85	Overview and Breeding Strategies of Table Potato Production in Sweden and the Fennoscandian Region. Potato Research, 2016, 59, 279-294.	2.7	48
86	Microsatellite-Aided Screening for Fertility Restoration Genes (Rf) Facilitates Hybrid Improvement. Rice Science, 2016, 23, 160-164.	3.9	34
87	GenotypeÂ×Âenvironment interaction and selection for drought adaptation in sweetpotato (Ipomoea) Tj	ETQq1 1.0.784	314.rgBT /0
88	Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. Trends in Plant Science, 2016, 21, 31-42.	8.8	293
89	Breeding schemes for the implementation of genomic selection in wheat (Triticum spp .). Plant Science, 2016, 242, 23-36.	3.6	292

90 â€~Alisha', â€~Anamaria', â€~Bie', â€~Bita', â€~Caelan', â€~Ivone', â€~Lawrence', â€~Margarete', ad â€~Vie Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 597-600.

#	Article	IF	CITATIONS
91	Farmers' rice knowledge and adoption of new cultivars in the Tillabéry region of western Niger. Agriculture and Food Security, 2015, 4, .	4.2	5
92	Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 2015, 6, 563.	3.6	243
93	Haploids: Constraints and opportunities in plant breeding. Biotechnology Advances, 2015, 33, 812-829.	11.7	198
94	Assessment of Rice Inbred Lines and Hybrids under Low Fertilizer Levels in Senegal. Sustainability, 2014, 6, 1153-1162.	3.2	10
95	Genetic diversity analysis in Phaseolus vulgaris L. using morphological traits. Genetic Resources and Crop Evolution, 2014, 61, 555-566.	1.6	20
96	From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnology Advances, 2014, 32, 158-169.	11.7	135
97	Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science, 2014, 19, 592-601.	8.8	559
98	Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops. Electronic Journal of Biotechnology, 2014, 17, 238-245.	2.2	60
99	New quantitative trait loci for enhancing adaptation to salinity in rice from Hasawi, a Saudi landrace into three African cultivars at the reproductive stage. Euphytica, 2014, 200, 45-60.	1.2	61
100	The importance of Guizotia abyssinica (niger) for sustainable food security in Ethiopia. Genetic Resources and Crop Evolution, 2013, 60, 1763-1770.	1.6	14
101	Variability in reproductive fitness and virulence of four <i>Radopholus similis</i> nematode populations associated with plantains and banana (<i>Musa</i> spp.) in Uganda. International Journal of Pest Management, 2013, 59, 20-24.	1.8	1
102	Marker-aided breeding for resistance to bean common mosaic virus in Kyrgyz bean cultivars. Euphytica, 2013, 193, 67-78.	1.2	32
103	Detection of duplicates among repatriated Nordic spring barley (Hordeum vulgare L. s.l.) accessions using agronomic and morphological descriptors and microsatellite markers. Genetic Resources and Crop Evolution, 2013, 60, 1-11.	1.6	27
104	Screening Musa germplasm for resistance to burrowing nematode populations from Uganda. Genetic Resources and Crop Evolution, 2013, 60, 367-375.	1.6	4
105	Food, Nutrition and Agrobiodiversity Under Global Climate Change. Advances in Agronomy, 2013, 120, 1-128.	5.2	85
106	Timing of mounding for bambara groundnut affects crop development and yield in a rainfed tropical environment. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2013, 63, 370-375.	0.6	1
107	Drought Tolerance. , 2013, , 203-223.		1
108	Additive relationships and parent–offspring regression in Musa germplasm with intergeneration genome size polymorphism. Scientia Horticulturae, 2012, 136, 69-74.	3.6	2

#	Article	IF	CITATIONS
109	Repeatability and optimum trial configuration for field-testing of banana and plantain. Scientia Horticulturae, 2012, 140, 39-44.	3.6	8
110	Estimating genetic effects in maternal and paternal half-sibs from tetraploid-diploid crosses in Musa spp Euphytica, 2012, 185, 295-301.	1.2	5
111	Marker-Aided Breeding Revolutionizes Twenty-First Century Crop Improvement. , 2012, , 435-452.		4
112	Molecular Mapping of Complex Traits. , 2012, , 116-123.		3
113	Map-Based Cloning in Musa spp , 2012, , 124-155.		Ο
114	Swimming in the Breeding Pool: Partnering for Conservation of Plant Genetic Resources through Crop Germplasm Enhancement. Proceedings of the Latvian Academy of Sciences, 2012, 66, 143-147.	0.1	1
115	Musa Genetic Diversity Revealed by SRAP and AFLP. Molecular Biotechnology, 2011, 47, 189-199.	2.4	46
116	Genetics of Important Traits in Musa. , 2011, , 71-83.		6
117	The Future of Food: Scenarios for 2050. Crop Science, 2010, 50, S-33.	1.8	136
118	Conserving and Enhancing Maize Genetic Resources as Global Public Goods–A Perspective from CIMMYT. Crop Science, 2010, 50, 13-28.	1.8	72
119	Improving Carotenoids and Amino-Acids in Cassava. Recent Patents on Food, Nutrition & Agriculture, 2009, 1, 32-38.	0.9	17
120	Ploidy manipulation of the gametophyte, endosperm and sporophyte in nature and for crop improvement: a tribute to Professor Stanley J. Peloquin (1921–2008). Annals of Botany, 2009, 104, 795-807.	2.9	51
121	Research and field monitoring on transgenic crops by the Centro Internacional de Mejoramiento de MaÃz y Trigo (CIMMYT). Euphytica, 2008, 164, 893-902.	1.2	12
122	Numerical classification of related Peruvian highland maize races using internal ear traits. Genetic Resources and Crop Evolution, 2008, 55, 1055-1064.	1.6	36
123	Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution, 2008, 55, 1095-1140.	1.6	155
124	Climate change: Can wheat beat the heat?. Agriculture, Ecosystems and Environment, 2008, 126, 46-58.	5.3	550
125	Enhancing Crop Gene Pools with Beneficial Traits Using Wild Relatives. , 2008, , 179-230.		109
126	Minimum resources for phenotyping morphological traits of maize (Zea mays L.) genetic resources. Plant Genetic Resources: Characterisation and Utilisation, 2008, 6, 195-200.	0.8	32

#	Article	IF	CITATIONS
127	Assessing Morphological and Genetic Variation in Annatto (Bixa orellana L.) by Sequence-related Amplified Polymorphism and Cluster Analysis. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 2013-2017.	1.0	16
128	Association Analysis of Historical Bread Wheat Germplasm Using Additive Genetic Covariance of Relatives and Population Structure. Genetics, 2007, 177, 1889-1913.	2.9	426
129	The Molecularization of Public Sector Crop Breeding: Progress, Problems, and Prospects. Advances in Agronomy, 2007, , 163-318.	5.2	121
130	The Genetic Basis of the Green Revolution in Wheat Production. , 2007, , 39-58.		23
131	High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica, 2007, 157, 365-384.	1.2	132
132	Challenges to international wheat breeding. Euphytica, 2007, 157, 281-285.	1.2	18
133	Breeding crops for reduced-tillage management in the intensive, rice–wheat systems of South Asia. Euphytica, 2006, 153, 135-151.	1.2	96
134	Response of East African highland bananas and hybrids to Radopholus similis. Nematology, 2005, 7, 655-666.	0.6	17
135	Ploidy Manipulations and Genetic Markers as Tools for Analysis of Quantitative Trait Variation in Progeny Derived from Triploid Plantains. Hereditas, 2004, 126, 255-259.	1.4	9
136	Title is missing!. Genetic Resources and Crop Evolution, 2003, 50, 139-148.	1.6	130
137	Developing a Mini Core of Peanut for Utilization of Genetic Resources. Crop Science, 2002, 42, 2150-2156.	1.8	125
138	Cultivar diversity in Nordic spring barley breeding (1930–1991). Euphytica, 2002, 123, 111-119.	1.2	10
139	Genetic gains in Nordic spring barley breeding over sixty years. Euphytica, 2002, 126, 283-289.	1.2	42
140	Selecting aSolanum tuberosum subsp.andigena core collection using morphological, geographical, disease and pest descriptors. American Journal of Potato Research, 2000, 77, 183-190.	0.9	60
141	Isozyme Analysis of Entire and Core Collections of <i>Solanum tuberosum</i> subsp. <i>andigena</i> Potato Cultivars. Crop Science, 2000, 40, 273-276.	1.8	54
142	Fruit quality evaluation of plantains, plantain hybrids, and cooking bananas. Postharvest Biology and Technology, 1999, 15, 73-81.	6.0	28
143	Segregation of bunch orientation in plantain and banana hybrids. Euphytica, 1998, 101, 79-82.	1.2	9
144	Influence of black Sigatoka disease on the growth and yield of diploid and tetraploid hybrid plantains. Crop Protection, 1998, 17, 13-18.	2.1	12

#	Article	IF	CITATIONS
145	Quantitative variation and phenotypic correlations in banana and plantain. Scientia Horticulturae, 1998, 72, 239-253.	3.6	17
146	Cowpeas from Nigeria: A Silent Food Revolution. Outlook on Agriculture, 1998, 27, 125-128.	3.4	37
147	Segregation at Microsatellite Loci in Haploid and Diploid Gametes of Musa. Crop Science, 1998, 38, 211-217.	1.8	70
148	Multivariate pattern of quantitative trait variation in triploid banana and plantain cultivars. Scientia Horticulturae, 1997, 71, 197-202.	3.6	22
149	Morphological variation in Musa germplasm. Genetic Resources and Crop Evolution, 1997, 44, 393-404.	1.6	49
150	Title is missing!. Euphytica, 1997, 96, 339-344.	1.2	23
151	Secondary polyploids, heterosis, and evolutionary crop breeding for further improvement of the plantain and banana (Musa spp. L) genome. Theoretical and Applied Genetics, 1997, 94, 1113-1120.	3.6	30
152	IITA High Rainfall Station: Twenty Years of Research for Sustainable Agriculture in the West African Humid Forest. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 969-972.	1.0	16
153	Field Performance of Conventional vs. in Vitro Propagules of Plantain (Musa spp., AAB Group). Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 862-865.	1.0	34
154	Effect of ploidy on stomatal and other quantitative traits in plantain and banana hybrids. Euphytica, 1995, 83, 117-122.	1.2	61
155	Banana weevil resistance and corm hardness in Musa germplasm. Euphytica, 1995, 86, 95-102.	1.2	44
156	Effect of the parthenocarpy gene P1 and ploidy on fruit and bunch traits of plantain-banana hybrids. Heredity, 1995, 75, 460-465.	2.6	35
157	Phenotypic Diversity and Patterns of Variation in West and Central African Plantains (Musa Spp., AAB) Tj ETQq1	1 0.78431 1.7	4 rgBT /Over
158	Plot Techniques for Assessment of Bunch Weight in Banana Trials under Two Systems of Crop Management. Agronomy Journal, 1995, 87, 63-69.	1.8	53
159	Factors Influencing Seed Set in Triploid Musa spp. L. and Production of Euploid Hybrids. Annals of Botany, 1995, 75, 151-155.	2.9	50
160	Plantain-derived Diploid Hybrids (TMP2x) with Black Sigatoka Resistance. Hortscience: A Publication of the American Society for Hortcultural Science, 1995, 30, 147-149.	1.0	24
161	`PITA-9': A Black-sigatoka-resistant Hybrid from the `False Horn' Plantain Gene Pool. Hortscience: A Publication of the American Society for Hortcultural Science, 1995, 30, 395-397.	1.0	22
162	Diploid potato germplasm derived from wild and land race genetic resources. American Potato Journal, 1994, 71, 599-604.	0.3	41

#	Article	IF	CITATIONS
163	Effect of Sporophytic Heterozygosity on the Male Gametophyte of the Tetraploid Potato (Solanum) Tj ETQq1 1 ().784314 r 2.9	gBT /Overlo
164	Genetics of Apical Dominance in Plantain (Musa spp., AAB Group) and Improvement of Suckering Behavior. Journal of the American Society for Horticultural Science, 1994, 119, 1050-1053.	1.0	42
165	Development and performance of balck sigatoka-resistant tetraploid hybrids of plantain (Musa spp.,) Tj ETQq1 1	0.784314 1.2	rgBT /Over
166	Inheritance of early blight resistance in diploid potatoes. Euphytica, 1993, 71, 15-19.	1.2	19
167	Male sterility and 2n pollen in 4x progenies derived from 4x×2x and 4x×4x crosses in potatoes. Potato Research, 1993, 36, 227-236.	2.7	25
168	Registration of 14 Improved Tropical Musa Plantain Hybrids with Black Sigatoka Resistance. Hortscience: A Publication of the American Society for Hortcultural Science, 1993, 28, 957-959.	1.0	46
169	Genetic analysis by use of potato haploid populations. Genome, 1992, 35, 103-108.	2.0	37
170	The importance of Endosperm Balance Number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica, 1992, 60, 105-113.	1.2	78
171	A restorer gene for genetic-cytoplasmic male sterility in cultivated potatoes. American Potato Journal, 1991, 68, 19-28.	0.3	43
172	Adaptation to day length and yield stability of families from 4x�2x crosses in potato. Euphytica, 1991, 56, 187-195.	1.2	21
173	Dedication: Norman E. Borlaug The Humanitarian Plant Scientist Who Changed the World. , 0, , 1-37.		10