Giordano Rampioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3226558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro Activity of Antivirulence Drugs Targeting the las or pqs Quorum Sensing Against Cystic Fibrosis Pseudomonas aeruginosa Isolates. Frontiers in Microbiology, 2022, 13, 845231.	3.5	10
2	PqsE Expands and Differentially Modulates the RhlR Quorum Sensing Regulon in Pseudomonas aeruginosa. Microbiology Spectrum, 2022, 10, .	3.0	23
3	The Pseudomonas aeruginosa DksA1 protein is involved in H2O2 tolerance and within-macrophages survival and can be replaced by DksA2. Scientific Reports, 2022, 12, .	3.3	7
4	Generation of Genetic Tools for Gauging Multiple-Gene Expression at the Single-Cell Level. Applied and Environmental Microbiology, 2021, 87, .	3.1	6
5	The two Pseudomonas aeruginosa DksA stringent response proteins are largely interchangeable at the whole transcriptome level and in the control of virulenceâ€related traits. Environmental Microbiology, 2021, 23, 5487-5504.	3.8	3
6	Identification of FDA-approved antivirulence drugs targeting the <i>Pseudomonas aeruginosa</i> quorum sensing effector protein PqsE. Virulence, 2020, 11, 652-668.	4.4	28
7	SUSTAINABILITY OF SCHOOLS: A MULTIDISCIPLINARY APPROACH TO STUDYING AIR QUALITY IN EDUCATIONAL BUILDINGS. , 2020, , .		2
8	New Shuttle Vectors for Real-Time Gene Expression Analysis in Multidrug-Resistant Acinetobacter Species: <i>In Vitro</i> and <i>In Vivo</i> Responses to Environmental Stressors. Applied and Environmental Microbiology, 2019, 85, .	3.1	17
9	In silico Selection and Experimental Validation of FDA-Approved Drugs as Anti-quorum Sensing Agents. Frontiers in Microbiology, 2019, 10, 2355.	3.5	38
10	Molecular Communications in the Context of "Synthetic Cells―Research. IEEE Transactions on Nanobioscience, 2019, 18, 43-50.	3.3	9
11	Gene-Expressing Liposomes as Synthetic Cells for Molecular Communication Studies. Frontiers in Bioengineering and Biotechnology, 2019, 7, 1.	4.1	247
12	Contribution of Active Iron Uptake to Acinetobacter baumannii Pathogenicity. Infection and Immunity, 2019, 87, .	2.2	64
13	Adaptive tracking of enzymatic reactions with quantum light. Optics Express, 2019, 27, 35245.	3.4	22
14	Chemical Exchanges and Actuation in Liposome-Based Synthetic Cells: Interaction with Biological Cells. Lecture Notes in Computer Science, 2019, , 145-158.	1.3	0
15	New Shuttle Vectors for Gene Cloning and Expression in Multidrug-Resistant Acinetobacter Species. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	47
16	Synthetic cells produce a quorum sensing chemical signal perceived by <i>Pseudomonas aeruginosa</i> . Chemical Communications, 2018, 54, 2090-2093.	4.1	89
17	A Coculture-Based Approach for Screening Campaigns Aimed at Identifying Novel Pseudomonas aeruginosa Quorum Sensing Inhibitors. Methods in Molecular Biology, 2018, 1673, 287-296.	0.9	3
18	Current Directions in Synthetic Cell Research. Lecture Notes in Bioengineering, 2018, , 141-154.	0.4	3

#	Article	IF	CITATIONS
19	Pseudomonas aeruginosa mutants defective in glucose uptake have pleiotropic phenotype and altered virulence in non-mammal infection models. Scientific Reports, 2018, 8, 16912.	3.3	23
20	Interfacing Synthetic Cells with Biological Cells: An Application of the Synthetic Method. , 2018, , .		1
21	Identification of FDA-Approved Drugs as Antivirulence Agents Targeting the <i>pqs</i> Quorum-Sensing System of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	82
22	Differential Regulation of the Phenazine Biosynthetic Operons by Quorum Sensing in Pseudomonas aeruginosa PAO1-N. Frontiers in Cellular and Infection Microbiology, 2018, 8, 252.	3.9	79
23	A novel bacterial <scp>l</scp> â€arginine sensor controlling câ€diâ€GMP levels in <i>Pseudomonas aeruginosa</i> . Proteins: Structure, Function and Bioinformatics, 2018, 86, 1088-1096.	2.6	31
24	Insights into the GTPâ€dependent allosteric control of câ€diâ€GMP hydrolysis from the crystal structure of PA0575 protein from <i>PseudomonasÂaeruginosa</i> . FEBS Journal, 2018, 285, 3815-3834.	4.7	31
25	The multi-output incoherent feedforward loop constituted by the transcriptional regulators LasR and RsaL confers robustness to a subset of quorum sensing genes in Pseudomonas aeruginosa. Molecular BioSystems, 2017, 13, 1080-1089.	2.9	19
26	Characterization of the multiple molecular mechanisms underlying RsaL control of phenazineâ€1â€carboxylic acid biosynthesis in the rhizosphere bacterium <i>Pseudomonas aeruginosa</i> PA1201. Molecular Microbiology, 2017, 104, 931-947.	2.5	18
27	Genetic Tools to Study c-di-CMP-Dependent Signaling in Pseudomonas aeruginosa. Methods in Molecular Biology, 2017, 1657, 471-480.	0.9	1
28	Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Scientific Reports, 2017, 7, 11392.	3.3	76
29	Drug repurposing for antivirulence therapy against opportunistic bacterial pathogens. Emerging Topics in Life Sciences, 2017, 1, 13-22.	2.6	24
30	<i>In Silico</i> Discovery and <i>In Vitro</i> Validation of Catechol-Containing Sulfonohydrazide Compounds as Potent Inhibitors of the Diguanylate Cyclase PleD. Journal of Bacteriology, 2016, 198, 147-156.	2.2	42
31	Unravelling the Genome-Wide Contributions of Specific 2-Alkyl-4-Quinolones and PqsE to Quorum Sensing in Pseudomonas aeruginosa. PLoS Pathogens, 2016, 12, e1006029.	4.7	140
32	Toward Repositioning Niclosamide for Antivirulence Therapy of <i>Pseudomonas aeruginosa</i> Lung Infections: Development of Inhalable Formulations through Nanosuspension Technology. Molecular Pharmaceutics, 2015, 12, 2604-2617.	4.6	64
33	Synthesis of Triazole-Linked Analogues of c-di-GMP and Their Interactions with Diguanylate Cyclase. Journal of Medicinal Chemistry, 2015, 58, 8269-8284.	6.4	34
34	Styrene is sensed by the N-terminal PAS sensor domain of StyS, a double sensor kinase from the styrene-degrading bacterium Pseudomonas fluorescens ST. Annals of Microbiology, 2015, 65, 1177-1182.	2.6	3
35	A synthetic biology approach to bio-chem-ICT: first moves towards chemical communication between synthetic and natural cells. Natural Computing, 2014, 13, 333-349.	3.0	22
36	The art of antibacterial warfare: Deception through interference with quorum sensing–mediated communication. Bioorganic Chemistry, 2014, 55, 60-68.	4.1	105

#	Article	IF	CITATIONS
37	Molecular Communication Technology: General Considerations on the Use of Synthetic Cells and Some Hints from In Silico Modelling. Communications in Computer and Information Science, 2014, , 169-189.	0.5	3
38	Affecting Pseudomonas aeruginosa Phenotypic Plasticity by Quorum Sensing Dysregulation Hampers Pathogenicity in Murine Chronic Lung Infection. PLoS ONE, 2014, 9, e112105.	2.5	8
39	Towards the Engineering of Chemical Communication Between Semi-Synthetic and Natural Cells. , 2014, , 91-104.		3
40	New Life for an Old Drug: the Anthelmintic Drug Niclosamide Inhibits Pseudomonas aeruginosa Quorum Sensing. Antimicrobial Agents and Chemotherapy, 2013, 57, 996-1005.	3.2	169
41	Structural Basis for Native Agonist and Synthetic Inhibitor Recognition by the Pseudomonas aeruginosa Quorum Sensing Regulator PqsR (MvfR). PLoS Pathogens, 2013, 9, e1003508.	4.7	185
42	Chemical communication between synthetic and natural cells: a possible experimental design Electronic Proceedings in Theoretical Computer Science, EPTCS, 2013, 130, 14-26.	0.8	9
43	A New Transcriptional Repressor of the Pseudomonas aeruginosa Quorum Sensing Receptor Gene lasR. PLoS ONE, 2013, 8, e69554.	2.5	21
44	Functional Characterization of the Quorum Sensing Regulator RsaL in the Plant-Beneficial Strain Pseudomonas putida WCS358. Applied and Environmental Microbiology, 2012, 78, 726-734.	3.1	13
45	Semi-synthetic minimal cells as a tool for biochemical ICT. BioSystems, 2012, 109, 24-34.	2.0	56
46	The virtue of temperance: builtâ€in negative regulators of quorum sensing in <i>Pseudomonas</i> . Molecular Microbiology, 2011, 82, 1060-1070.	2.5	35
47	<i>Salmonella</i> Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E. EMBO Reports, 2011, 12, 252-258.	4.5	47
48	Transcriptomic analysis reveals a global alkylâ€quinoloneâ€independent regulatory role for PqsE in facilitating the environmental adaptation of <i>Pseudomonas aeruginosa</i> to plant and animal hosts. Environmental Microbiology, 2010, 12, 1659-1673.	3.8	122
49	Contribution of the RsaL global regulator to <i>Pseudomonas aeruginosa</i> virulence and biofilm formation. FEMS Microbiology Letters, 2009, 301, 210-217.	1.8	69
50	The interplay of StyR and IHF regulates substrate-dependent induction and carbon catabolite repression of styrene catabolism genes in Pseudomonas fluorescens ST. BMC Microbiology, 2008, 8, 92.	3.3	13
51	The Pseudomonas Quorum-Sensing Regulator RsaL Belongs to the Tetrahelical Superclass of H-T-H Proteins. Journal of Bacteriology, 2007, 189, 1922-1930.	2.2	45
52	RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in <i>Pseudomonas aeruginosa </i> . Molecular Microbiology, 2007, 66, 1557-1565.	2.5	130
53	The Pseudomonas putida Lon protease is involved in N-acyl homoserine lactone quorum sensing regulation. BMC Microbiology, 2007, 7, 71.	3.3	28

54 Styrene, an Unpalatable Substrate with Complex Regulatory Networks. , 2007, , 59-87.

3

#	Article	IF	CITATIONS
55	The Quorum-Sensing Negative Regulator RsaL of Pseudomonas aeruginosa Binds to the lasl Promoter. Journal of Bacteriology, 2006, 188, 815-819.	2.2	97
56	An Active-like Structure in the Unphosphorylated StyR Response Regulator Suggests a Phosphorylation- Dependent Allosteric Activation Mechanism. Structure, 2005, 13, 1289-1297.	3.3	46
57	Dual Role of Response Regulator StyR in Styrene Catabolism Regulation. Applied and Environmental Microbiology, 2005, 71, 5411-5419.	3.1	28
58	Styrene-catabolism regulation in Pseudomonas fluorescens ST: phosphorylation of StyR induces dimerization and cooperative DNA-binding. Biochemical and Biophysical Research Communications, 2003, 303, 926-931.	2.1	37