
## Michy P Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3226284/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Alterations in cyclic nucleotide signaling are implicated in healthy aging and age-related pathologies of the brain. Vitamins and Hormones, 2021, 115, 265-316.                                                          | 1.7  | 1         |
| 2  | How 3′,5′-cyclic nucleotide phosphodiesterases change in the brain with normal aging and dementia. ,<br>2021, , 109-117.                                                                                                 |      | 0         |
| 3  | A genetic basis for friendship? Homophily for membrane-associated PDE11A-cAMP-CREB signaling in CA1 of hippocampus dictates mutual social preference in male and female mice. Molecular Psychiatry, 2021, 26, 7107-7117. | 7.9  | 9         |
| 4  | Aging triggers an upregulation of a multitude of cytokines in the male and especially the female<br>rodent hippocampus but more discrete changes in other brain regions. Journal of Neuroinflammation,<br>2021, 18, 219. | 7.2  | 35        |
| 5  | The Role of PDE11A4 in Social Isolation-Induced Changes in Intracellular Signaling and Neuroinflammation. Frontiers in Pharmacology, 2021, 12, 749628.                                                                   | 3.5  | 9         |
| 6  | Phosphodiesterases PDE2A and PDE10A both change mRNA expression in the human brain with age, but<br>only PDE2A changes in a region-specific manner with psychiatric disease. Cellular Signalling, 2020, 70,<br>109592.   | 3.6  | 19        |
| 7  | Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Progress in Neurobiology, 2020, 190, 101799.                                                                | 5.7  | 3         |
| 8  | Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nature<br>Reviews Drug Discovery, 2019, 18, 770-796.                                                                         | 46.4 | 205       |
| 9  | Loss of Function of Phosphodiesterase 11A4 Shows that Recent and Remote Long-Term Memories Can<br>Be Uncoupled. Current Biology, 2019, 29, 2307-2321.e5.                                                                 | 3.9  | 24        |
| 10 | ldentification of new PDE9A isoforms and how their expression andÂsubcellular compartmentalization in the brain change across the life span. Neurobiology of Aging, 2018, 65, 217-234.                                   | 3.1  | 30        |
| 11 | A homozygous <i>lossâ€ofâ€function</i> mutation in <i>PDE2A</i> associated to earlyâ€onset hereditary chorea. Movement Disorders, 2018, 33, 482-488.                                                                     | 3.9  | 52        |
| 12 | PDE11A., 2018,, 3804-3826.                                                                                                                                                                                               |      | 7         |
| 13 | Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cellular Signalling, 2018, 42, 281-291.                                                                          | 3.6  | 124       |
| 14 | A Role for Phosphodiesterase 11A (PDE11A) in the Formation of Social Memories and the Stabilization of Mood. Advances in Neurobiology, 2017, 17, 201-230.                                                                | 1.8  | 19        |
| 15 | PDE11A regulates social behaviors and is a key mechanism by which social experience sculpts the brain.<br>Neuroscience, 2016, 335, 151-169.                                                                              | 2.3  | 43        |
| 16 | Phosphodiesterase 11A (PDE11A), Enriched in Ventral Hippocampus Neurons, is Required for<br>Consolidation of Social but not Nonsocial Memories in Mice. Neuropsychopharmacology, 2016, 41,<br>2920-2931.                 | 5.4  | 44        |
| 17 | PDE11A., 2016,, 1-23.                                                                                                                                                                                                    |      | 1         |
| 18 | Select 3′,5′-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain.<br>Cellular Signalling, 2014, 26, 383-397.                                                                        | 3.6  | 114       |

2

MICHY P KELLY

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Does Phosphodiesterase 11A (PDE11A) Hold Promise as a Future Therapeutic Target?. Current<br>Pharmaceutical Design, 2014, 21, 389-416.                                                                                                                              | 1.9 | 32        |
| 20 | PDE11A negatively regulates lithium responsivity in mice possibly due to an interaction with AKT/PKB (1144.8). FASEB Journal, 2014, 28, 1144.8.                                                                                                                     | 0.5 | 0         |
| 21 | The distribution of phosphodiesterase 2A in the rat brain. Neuroscience, 2012, 226, 145-155.                                                                                                                                                                        | 2.3 | 55        |
| 22 | Transcriptional regulation of neurodevelopmental and metabolic pathways by NPAS3. Molecular Psychiatry, 2012, 17, 267-279.                                                                                                                                          | 7.9 | 41        |
| 23 | The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Molecular Psychiatry, 2011, 16, 1006-1023.                                                                                                               | 7.9 | 124       |
| 24 | Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric<br>disease-related phenotypes. Proceedings of the National Academy of Sciences of the United States of<br>America, 2010, 107, 8457-8462.                          | 7.1 | 78        |
| 25 | Differential function of phosphodiesterase families in the brain: gaining insights through the use of genetically modified animals. Progress in Brain Research, 2009, 179, 67-73.                                                                                   | 1.4 | 26        |
| 26 | Phosphodiesterase 10A Inhibitor Activity in Preclinical Models of the Positive, Cognitive, and Negative<br>Symptoms of Schizophrenia. Journal of Pharmacology and Experimental Therapeutics, 2009, 331,<br>574-590.                                                 | 2.5 | 261       |
| 27 | The supra-additive hyperactivity caused by an amphetamine–chlordiazepoxide mixture exhibits an inverted-U dose response: Negative implications for the use of a model in screening for mood stabilizers. Pharmacology Biochemistry and Behavior, 2009, 92, 649-654. | 2.9 | 24        |
| 28 | Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Gαs, a<br>G-protein subunit genetically linked to schizophrenia. Molecular Psychiatry, 2009, 14, 398-415.                                                                  | 7.9 | 59        |
| 29 | Constitutive activation of the G-protein subunit Gαs within forebrain neurons causes PKA-dependent alterations in fear conditioning and cortical <i>Arc</i> mRNA expression. Learning and Memory, 2008, 15, 75-83.                                                  | 1.3 | 35        |
| 30 | Chronic Gαs Signaling in the Striatum Increases Anxiety-Related Behaviors Independent of Developmental Effects. Journal of Neuroscience, 2008, 28, 13952-13956.                                                                                                     | 3.6 | 30        |
| 31 | Constitutive Activation of Gαs within Forebrain Neurons Causes Deficits in Sensorimotor Gating<br>Because of PKA-Dependent Decreases in cAMP. Neuropsychopharmacology, 2007, 32, 577-588.                                                                           | 5.4 | 62        |
| 32 | Rolipram: A specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience, 2007, 144, 239-246.                                                                                                                                         | 2.3 | 151       |
| 33 | Mice expressing constitutively active Gsα exhibit stimulus encoding deficits similar to those observed in schizophrenia patients. Neuroscience, 2006, 141, 1257-1264.                                                                                               | 2.3 | 18        |
| 34 | Chronically increased Gs signaling disrupts associative and spatial learning. Learning and Memory, 2006, 13, 745-752.                                                                                                                                               | 1.3 | 35        |
| 35 | Sensorimotor Gating Deficits in Transgenic Mice Expressing a Constitutively Active Form of Gsα.<br>Neuropsychopharmacology, 2004, 29, 494-501.                                                                                                                      | 5.4 | 33        |
| 36 | Acquisition of a novel behavior induces higher levels of Arc mRNA than does overtrained performance. Neuroscience, 2002, 110, 617-626.                                                                                                                              | 2.3 | 106       |

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Enhanced Remote Long-Term Social Memory Despite an Absence of Any Recent Long-Term Memory for<br>That Same Event. SSRN Electronic Journal, 0, , . | 0.4 | Ο         |