
Joaquin Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3226282/publications.pdf Version: 2024-02-01

Ιολομιν Μεσινλ

#	Article	IF	CITATIONS
1	Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
2	Differential Seed Germination Responses of Tomato Landraces to Temperature under Climate Change Scenarios. Seeds, 2022, 1, 36-48.	1.8	0
3	Evolutionary and Gene Expression Analyses Reveal New Insights into the Role of LSU Gene-Family in Plant Responses to Sulfate-Deficiency. Plants, 2022, 11, 1526.	3.5	3
4	<i>Arabidopsis thaliana</i> transcription factors <i>MYB28</i> and <i>MYB29</i> shape ammonium stress responses by regulating Fe homeostasis. New Phytologist, 2021, 229, 1021-1035.	7.3	43
5	Integrative Transcriptomic and Metabolomic Analysis at Organ Scale Reveals Gene Modules Involved in the Responses to Suboptimal Nitrogen Supply in Tomato. Agronomy, 2021, 11, 1320.	3.0	6
6	The targeted overexpression of SICDF4 in the fruit enhances tomato size and yield involving gibberellin signalling. Scientific Reports, 2020, 10, 10645.	3.3	14
7	The Arabidopsis Transcription Factor CDF3 Is Involved in Nitrogen Responses and Improves Nitrogen Use Efficiency in Tomato. Frontiers in Plant Science, 2020, 11, 601558.	3.6	18
8	Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum. BMC Plant Biology, 2020, 20, 385.	3.6	13
9	CDF transcription factors: plant regulators to deal with extreme environmental conditions. Journal of Experimental Botany, 2020, 71, 3803-3815.	4.8	29
10	Local Changes in Chromatin Accessibility and Transcriptional Networks Underlying the Nitrate Response in Arabidopsis Roots. Molecular Plant, 2019, 12, 1545-1560.	8.3	31
11	SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana. Journal of Experimental Botany, 2018, 69, 619-631.	4.8	48
12	WRKY7, -11 and -17 transcription factors are modulators of the bZIP28 branch of the unfolded protein response during PAMP-triggered immunity in Arabidopsis thaliana. Plant Science, 2018, 277, 242-250.	3.6	20
13	Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 470.	3.6	44
14	When Transcriptomics and Metabolomics Work Hand in Hand: A Case Study Characterizing Plant CDF Transcription Factors. High-Throughput, 2018, 7, 7.	4.4	4
15	Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 748-764.	5.7	110
16	Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions. Frontiers in Plant Science, 2017, 8, 660.	3.6	45
17	Identification of Novel Components of the Unfolded Protein Response in Arabidopsis. Frontiers in Plant Science, 2016, 7, 650.	3.6	18
18	Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany, 2014, 65, 995-1012.	4.8	161

#	Article	IF	CITATIONS
19	Salinity Assay in Tomato. Bio-protocol, 2014, 4, .	0.4	3
20	Salinity Assay in Arabidopsis. Bio-protocol, 2014, 4, .	0.4	9
21	The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of <i><scp>YUCCA</scp>8</i> and <i><scp>YUCCA</scp>9</i> gene expression. Plant Journal, 2013, 74, 626-637.	5.7	178
22	YUCCA8andYUCCA9overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Signaling and Behavior, 2013, 8, e26363.	2.4	33
23	Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. Journal of Experimental Botany, 2012, 63, 293-304.	4.8	63
24	Integration of low temperature and light signaling during cold acclimation response in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16475-16480.	7.1	309
25	The CBFs: Three arabidopsis transcription factors to cold acclimate. Plant Science, 2011, 180, 3-11.	3.6	219
26	The World Saffron and Crocus collection: strategies for establishment, management, characterisation and utilisation. Genetic Resources and Crop Evolution, 2011, 58, 125-137.	1.6	44
27	<i>Arabidopsis</i> CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 21002-21007.	7.1	321
28	Phylogenetic and functional analysis of Arabidopsis RCI2 genes. Journal of Experimental Botany, 2007, 58, 4333-4346.	4.8	68
29	Arabidopsis mutants deregulated in RCI2A expression reveal new signaling pathways in abiotic stress responses. Plant Journal, 2005, 42, 586-597.	5.7	29
30	Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta, 2003, 216, 523-534.	3.2	87
31	bZIP signalling cascade in ABA transduction pathway. Trends in Plant Science, 2002, 7, 288-289.	8.8	1
32	Regulatory gene networks involved in the cold transduction pathway. Trends in Plant Science, 2002, 7, 483.	8.8	0
33	Developmental and Stress Regulation of RCI2A andRCI2B, Two Cold-Inducible Genes of Arabidopsis Encoding Highly Conserved Hydrophobic Proteins. Plant Physiology, 2001, 125, 1655-1666.	4.8	96
34	The Arabidopsis CBF Gene Family Is Composed of Three Genes Encoding AP2 Domain-Containing Proteins Whose Expression Is Regulated by Low Temperature but Not by Abscisic Acid or Dehydration1. Plant Physiology, 1999, 119, 463-470.	4.8	397
35	Production of a cytotoxic proteoglycan using callus culture of saffron corms (Crocus sativus L.). Journal of Biotechnology, 1999, 73, 53-59.	3.8	32
36	14-3-3 Proteins Are Part of an Abscisic Acid–VIVIPAROUS1 (VP1) Response Complex in the Em Promoter and Interact with VP1 and EmBP1. Plant Cell, 1998, 10, 837-847.	6.6	134

#	Article	IF	CITATIONS
37	14-3-3 Proteins Are Part of an Abscisic Acid-VIVIPAROUS1 (VP1) Response Complex in the Em Promoter and Interact with VP1 and EmBP1. Plant Cell, 1998, 10, 837.	6.6	72
38	An improved protocol for library screening by protein-protein interactions with biotinylated MBP-fusion proteins. Plant Molecular Biology Reporter, 1995, 13, 164-173.	1.8	2
39	Cloning of cDNA, expression, and chromosomal location of genes encoding the three types of subunits of the barley tetrameric inhibitor of insect ?-amylase. Plant Molecular Biology, 1993, 23, 535-542.	3.9	14