Alexander Belyaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3225391/publications.pdf

Version: 2024-02-01

700 papers

29,965 citations

80 h-index 132 g-index

722 all docs 722 docs citations

times ranked

722

10701 citing authors

#	Article	IF	CITATIONS
1	Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
2	Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions. Journal of High Energy Physics, 2022, 2022, 1.	4.7	8
3	Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $$$ sqrt{s} $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
4	Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
5	Search for long-lived particles decaying to leptons with large impact parameter in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2022, 82, 153.	3.9	14
6	Search for long-lived particles produced in association with a Z boson in proton-proton collisions at $\$$ sqrt $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	3
7	Study of dijet events with large rapidity separation in proton-proton collisions at $\$\$$ sqrt $\$\$$ = 2.76 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	1
8	Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2022, 82, 290.	3.9	18
9	Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	13
10	Search for long-lived particles decaying into muon pairs in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV collected with a dedicated high-rate data stream. Journal of High Energy Physics, 2022, 2022, .	4.7	5
11	Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	12
12	Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
13	Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
14	Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
15	Search for electroweak production of charginos and neutralinos in proton-proton collisions at $\$\$$ sqrt $\{s\}$ $\$\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
16	Measurement of the inclusive $\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section in proton-proton collisions at \$\$ sqrt{s} \$\$ = 5.02 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
17	Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	2
18	Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at $$$ sqrt s $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	4

#	Article	IF	Citations
19	Search for single production of a vector-like T quark decaying to a top quark and a Z boson in the final state with jets and missing transverse momentum at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	5
20	Measurement of the inclusive and differential t\$\$ overline{t} $$$\hat{1}^3$$ cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	2
21	Observation of B\$\$^0\$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm {S}uppi ^+uppi ^-\$\$ and B\$\$^0_mathrm {S}\$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm {S}\$\$ decays. European Physical Journal C, 2022, 82, .	3.9	1
22	Search for the lepton flavor violating decay \ddot{l} , \hat{a}^{2} \hat{a}^{4} in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	3
23	Search for dark matter produced in association with a leptonically decaying \$\${mathrm{Z}} \$\$ boson in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 13.	3.9	33
24	Evidence for Higgs boson decay to a pair of muons. Journal of High Energy Physics, 2021, 2021, 1.	4.7	54
25	Search for top squark pair production using dilepton final states in \$\${ext {p}}}{ext {p}}\$\$ collision data collected at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 3.	3.9	33
26	Search for dark photons in Higgs boson production via vector boson fusion in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	14
27	Measurements of $f^{p}} {\mathbf{p}} {\mathbf{p}$	3.9	24
28	Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	15
29	Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	26
30	Search for new physics in top quark production with additional leptons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV using effective field theory. Journal of High Energy Physics, 2021, 2021, 1.	4.7	12
31	Measurement of differential cross sections for Z bosons produced in association with charm jets in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	5
32	Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at $$$ sqrt{s} $$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	28
33	Development and validation of HERWIGÂ7 tunes from CMS underlying-event measurements. European Physical Journal C, 2021, 81, 312.	3.9	12
34	Angular analysis of the decay B+ \hat{a} †' K \hat{a} —(892)+ \hat{l} 4+ \hat{l} 4 \hat{a} ' in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = TeV. Journal of High Energy Physics, 2021, 2021, 1.	= 8 4.7	9
35	Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $\frac{5}{100} = 13$,ext $\frac{7}{100} = 13$,ext $\frac{7}{100} = 13$.	3.9	40
36	Measurement of b jet shapes in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 5.02 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	4

3

#	Article	IF	CITATIONS
37	First measurement of large area jet transverse momentum spectra in heavy-ion collisions. Journal of High Energy Physics, 2021, 2021, 1.	4.7	11
38	Study of Drell-Yan dimuon production in proton-lead collisions at $\$$ sqrt $\{s_{NN}\}$ \$\\$ = 8.16 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	3
39	Probing dark matter with disappearing tracks at the LHC. Physical Review D, 2021, 103, .	4.7	16
40	Measurements of the differential cross sections of the production of Z + jets and \hat{I}^3 + jets and of Z boson emission collinear with a jet in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	2
41	In-medium modification of dijets in PbPb collisions at $\$$ sqrt $\{s_{mathrm{NN}}\}$ $\$$ = 5.02 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	5
42	Measurement of the Z boson differential production cross section using its invisible decay mode (Z →) Tj ETQq0 Physics, 2021, 2021, 1.	0 0 rgBT / 4.7	Overlock 10 2
43	Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 488.	3.9	35
44	Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	27
45	Search for resonant and nonresonant new phenomena in high-mass dilepton final states at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	62
46	MUSiC: a model-unspecific search for new physics in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 629.	3.9	18
47	Search for a heavy vector resonance decaying to a $\$\{mathrm\{Z\}\}_{mathrm\{\}}^{mathrm\{\}}$ \$\$ Âboson and a Higgs boson in proton-proton collisions at $\$\$qrt\{s\} = 13,ext\{Te\}ext\{V\}$ \$\$. European Physical Journal C, 2021, 81, 688.	3.9	9
48	Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in protona \in proton collisions at $\frac{1}{s} = 13$, $\frac{1}{202}$, $\frac{1}{202}$. European Physical Journal C, 2021, 81, 723.	3.9	19
49	Measurements of angular distance and momentum ratio distributions in three-jet and $\{Z\}$ + two-jet final states in $\{z\}$ ext $\{z\}$ collisions. European Physical Journal C, 2021, 81, 852.	3.9	2
50	Precision luminosity measurement in proton–proton collisions at \$\$sqrt{s} = 13,hbox {TeV}\$\$ in 2015 and 2016 at CMS. European Physical Journal C, 2021, 81, 800.	3.9	123
51	Search for chargino-neutralino production in events with Higgs and W bosons using 137 fb \hat{a} °1 of proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	8
52	Measurements of the pp \hat{a}^{\dagger} W $\hat{A}\pm\hat{1}^{3}\hat{1}^{3}$ and pp \hat{a}^{\dagger} Z $\hat{1}^{3}\hat{1}^{3}$ cross sections at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV and limit anomalous quartic gauge couplings. Journal of High Energy Physics, 2021, 2021, 1.	s on 4.7	7
53	Beyond the Standard Model (BSM). Undergraduate Texts in Physics, 2021, , 347-359.	0.1	0
54	Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 970.	3.9	18

#	Article	IF	CITATIONS
55	Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the $\ddot{\parallel}$, $\ddot{\parallel}$, $\ddot{\parallel}$, $\ddot{\parallel}$ bb final state at 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	11
56	Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	36
57	Vectorlike top quark production via a chromomagnetic moment at the LHC. Physical Review D, 2021, 104, .	4.7	9
58	Observation of tW production in the single-lepton channel in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	2
59	Measurement of prompt open-charm production cross sections in proton-proton collisions at $\$\$$ sqrt $\{s\}$ $\$\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	2
60	Measurement of the inclusive and differential t\$\$ overline{t} $$$\hat{i}^3$$ cross sections in the single-lepton channel and EFT interpretation at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	3
61	Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	5
62	Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	8
63	Search for a heavy resonance decaying to a top quark and a W boson at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV in the fully hadronic final state. Journal of High Energy Physics, 2021, 2021, 1.	4.7	1
64	Dark Matter benchmark models for early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum. Physics of the Dark Universe, 2020, 27, 100371.	4.9	126
65	The production of isolated photons in PbPb and pp collisions at $\$$ sqrt $\{s_{NN}\}$ \$\\$ = 5.02 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	4
66	Investigation into the event-activity dependence of $\ddot{i}'(nS)$ relative production in proton-proton collisions at \$\$ sqrt{s} \$\$ = 7 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	12
67	Bose-Einstein correlations of charged hadrons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	11
68	A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. Computing and Software for Big Science, 2020, 4, 10.	2.9	21
69	Search for electroweak production of a vector-like T quark using fully hadronic final states. Journal of High Energy Physics, 2020, 2020, 1.	4.7	14
70	Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	14
71	Measurement of properties of \$\$ {mathrm{B}}_{mathrm{s}}^0 \$\$→ μ+μâ~' decays and search for B0→ μ+Î with the CMS experiment. Journal of High Energy Physics, 2020, 2020, 1.	14â^' 4.7	41
72	Search for a light pseudoscalar Higgs boson in the boosted 14144 , i, final state in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	23

#	Article	IF	Citations
73	Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at $\hat{a} \cdot \hat{s} < i > s < i> = 13$ TeV. Journal of Instrumentation, 2020, 15, P02027-P02027.	1.2	27
74	Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	10
75	Measurement of the cross section for $\$ mathrm{t}overline{mathrm{t}} \$\$ production with additional jets and b jets in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	5
76	Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	41
77	Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	37
78	Calibration of the CMS hadron calorimeters using proton-proton collision data at \hat{a} ss = 13 TeV. Journal of Instrumentation, 2020, 15, P05002-P05002.	1.2	3
79	Study of central exclusive "Equation missing" No EquationSource Format="TEX", only image production in proton-proton collisions at $\$$ sqrt $\{s\} = 5.02$ \$ and 13TeV. European Physical Journal C, 2020, 80, 718.	3.9	7
80	Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $\$$ qrt $\{s\}=13,\{ext \{TeV\}\} \$$. European Physical Journal C, 2020, 80, 752.	3.9	23
81	Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	25
82	Performance of the CMS Level-1 trigger in proton-proton collisions at $\hat{a}\hat{s}\langle i\rangle s\langle i\rangle = 13$ TeV. Journal of Instrumentation, 2020, 15, P10017-P10017.	1.2	84
83	Search for decays of the 125 GeV Higgs boson into a Z boson and a ϕor ϕ meson. Journal of High Energy Physics, 2020, 2020, 1.	4.7	6
84	Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment. Journal of High Energy Physics, 2020, 2020, 1.	4.7	21
85	Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $\$\$$ sqrt $\$\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	66
86	Search for supersymmetry in proton-proton collisions at $\$\$ \cdot \$ = 13$ TeV in events with high-momentum Z bosons and missing transverse momentum. Journal of High Energy Physics, 2020, 2020, 1.	4.7	4
87	Any room left for technicolor? Holographic studies of NJL assisted technicolor. Physical Review D, 2020, 101, .	4.7	4
88	Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	20
89	Search for an excited lepton that decays via a contact interaction to a lepton and two jets in proton-proton collisions at $\$$ sqrt $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	2
90	Search for new neutral Higgs bosons through the \$\$ mathrm{H}o mathrm{ZA}o {ell}^{+}{ell}^{-}mathrm{b}overline{mathrm{b}} \$\$ process in pp collisions at \$\$ q^{-} sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	27

#	Article	IF	Citations
91	Search for direct pair production of supersymmetric partners to the \$\${uptau }_{{}^{}}\$\$ lepton in proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2020, 80, 189.	3.9	22
92	Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in ${\bf PbPb}$ collisions at $\frac{5}{5} = 2.76$ and 5.02 , ext ${\bf PbPb}$. European Physical Journal C, 2020, 80, 534.	3.9	14
93	Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV and constraints on anomalous quartic couplings. Journal of High Energy Physics, 2020, 2020, 1.	4.7	20
94	Determination of the strong coupling constant $\hat{l}\pm S(mZ)$ from measurements of inclusive W± and Z boson production cross sections in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = 7 and 8 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	6
95	Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	7
96	Measurement of electroweak production of a \$\$mathrm{W} \$\$ boson in association with two jets in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2020, 80, 43.	3.9	11
97	Search for top squark pair production in a final state with two tau leptons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	1
98	Evidence for \$\$ext {W}ext {W}\$\$ production from double-parton interactions in proton–proton collisions at \$\$sqrt{s} = 13 ,ext {TeV} \$\$. European Physical Journal C, 2020, 80, 1.	3.9	10
99	Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2020, 80, 75.	3.9	78
100	Searches for physics beyond the standard model with the \$\$M_{mathrm {T2}}\$\$ variable in hadronic final states with and without disappearing tracks in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2020, 80, 3.	3.9	70
101	Extraction and validation of a new set of CMS pythia8 tunes from underlying-event measurements. European Physical Journal C, 2020, 80, 4.	3.9	198
102	Search for lepton flavour violating decays of a neutral heavy Higgs boson to 14 , and ei, in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	15
103	A search for the standard model Higgs boson decaying to charm quarks. Journal of High Energy Physics, 2020, 2020, 1.	4.7	20
104	Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	25
105	Search for dark matter particles produced in association with a Higgs boson in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	14
106	A multi-dimensional search for new heavy resonances decaying to boosted $\$ w \{\}{\}{\}\$\$ \$\ w \{\}{\}\\$\\$ \$\\$ \\$\ \ \ \}\\\\\\\\\\\\\	3.9	31
107	Measurement of the top quark pair production cross section in dilepton final states containing one \ddot{l} , lepton in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	2
108	Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	26

#	Article	IF	Citations
109	Dependence of inclusive jet production on the anti-kT distance parameter in pp collisions at $\$\$$ sqrt{mathrm{s}} $\$\$ = 13$ TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	8
110	Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	13
111	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>Au</mml:mi><mml:mo>+</mml:mo><mml:mi>Au</mml:mi>at<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msort><mml:msub><mml:mi>s</mml:mi><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:msort></mml:math></mml:mrow>	7.0	40
112	Measurement of single-diffractive dijet production in proton–proton collisions at \$\$sqrt{s} = 8,ext {Te}ext {V} \$\$ with the CMS and TOTEM experiments. European Physical Journal C, 2020, 80, 1164.	3.9	5
113	Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2020, 80, 370.	3.9	22
114	Measurement of $\frac{t}{ar{hbox {t}}}$ normalised multi-differential cross sections in $\frac{p}{ext {p}}$ \$\$ collisions at $\frac{s}{ar}$ normalised multi-differential cross sections in $\frac{p}{ext {p}}$ \$\$, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions. European Physical Journal C, 2020, 80, 1.	3.9	33
115	Decoding the nature of Dark Matter at current and future experiments. Journal of Physics: Conference Series, 2020, 1525, 012021.	0.4	0
116	Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two \ddot{I} , leptons and two jets in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	33
117	Search for a $W\hat{a}\in \mathbb{R}^2$ boson decaying to a vector-like quark and a top or bottom quark in the all-jets final state. Journal of High Energy Physics, 2019, 2019, 1.	4.7	5
118	Search for top quark partners with charge $5/3$ in the same-sign dilepton and single-lepton final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	13
119	Inclusive search for supersymmetry in pp collisions at $\$\$$ sqrt $\$$ =13 $\$\$$ TeV using razor variables and boosted object identification in zero and one lepton final states. Journal of High Energy Physics, 2019, 2019, 1.	4.7	3
120	Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	17
121	Search for excited leptons in \hat{a} , \hat{a} , \hat{a} , \hat{a} final states in proton-proton collisions at \$\$ sqrt{mathrm{s}}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	3
122	Search for new particles decaying to a jet and an emerging jet. Journal of High Energy Physics, 2019, 2019, 1.	4.7	24
123	Minimal spin-one isotriplet dark matter. Physical Review D, 2019, 99, .	4.7	15
124	Search for a heavy resonance decaying to a top quark and a vector-like top quark in the lepton + jets final state in pp collisions at $\frac{s}{r} = 13$, ext TeV \$\$ s = 13 TeV. European Physical Journal C, 2019, 79, 1.	3.9	9
125	Measurement of exclusive $\{{\{uprho _{}^{}\}}_{}^{}\}\{\{left(\{770\}ight) \}_{}^{}}\}$ $\{0\}$ \$\$\$\$\text{photoproduction in ultraperipheral pPb collisions at \$\$sqrt\{smash [b]\{s_{\mathrm} \{NN\}}\} = 5.02,ext \{Te\}ext \{V\} \$\$. European Physical Journal C, 2019, 79, 702.	3.9	33
126	Measurement of exclusive $\mbox{mathrm {Upsilon }$$ photoproduction from protons in $$mathrm {p}$$Pb collisions at $$sqrt{smash [b]{s_{_{mathrm {NN}}}}} = 5.02,ext {TeV} $$. European Physical Journal C, 2019, 79, 277.$	3.9	35

#	Article	IF	CITATIONS
127	Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at $\$$ sqrt $\{s\}=13$,ext $\{Te\}$ ext $\{V\}$ $\$$. European Physical Journal C, 2019, 79, 564.	3.9	50
128	Search for supersymmetry in final states with photons and missing transverse momentum in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	8
129	Measurement of the top quark mass in the all-jets final state at $\$$ sqrt $\{s\}$ =13,ext $\{TeV\}$ $\$$ s = 13 TeV and combination with the lepton+jets channel. European Physical Journal C, 2019, 79, 313.	3.9	40
130	Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in $f(x) = 13$, ext $f(x) = 13$,	3.9	8
131	Decoding the Nature of Dark Matter at Current and Future Experiments. Frontiers in Physics, 2019, 7, .	2.1	O
132	Search for charged Higgs bosons in the H± \hat{a} †' \ddot{i} , \hat{A} ± \hat{i} ½ \ddot{i} , decay channel in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	54
133	Any room left for technicolor? Dilepton searches at the LHC and beyond. Physical Review D, 2019, 99, .	4.7	7
134	Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2019, 79, 305.	3.9	4
135	Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	13
136	Search for a low-mass \ddot{l} , \hat{a} , \ddot{l} , + resonance in association with a bottom quark in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	9
137	Search for the associated production of the Higgs boson and a vector boson in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV via Higgs boson decays to \ddot{l} , leptons. Journal of High Energy Physics, 2019, 2019, 1.	4.7	7
138	Search for the pair production of light top squarks in the $e\hat{A}\pm\hat{1}$ / $4\hat{a}$ ° final state in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	5
139	Combined measurements of Higgs boson couplings in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2019, 79, 421.	3.9	355
140	Search for supersymmetry in events with a photon, jets, \$\$mathrm {b}\$\$-jets, and missing transverse momentum in proton–proton collisions at 13\$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2019, 79, 444.	3.9	11
141	Measurements of the pp \hat{a}^{\dagger} WZ inclusive and differential production cross sections and constraints on charged anomalous triple gauge couplings at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	14
142	Measurement of the f^- (where f^-) measurement of f^- (where f^-) measurement of the f^- (where f^-) measurement of f^- (where f^-) me	3.9	68
143	Measurement of the energy density as a function of pseudorapidity in proton–proton collisions at \$\$sqrt{s} =13,ext {TeV} \$\$. European Physical Journal C, 2019, 79, 1.	3.9	12
144	Search for nonresonant Higgs boson pair production in the $\$$ mathrm $\{b\}$ overline $\{mathrm\{b\}\}$ mathrm $\{b\}$ \$\$ final state at $\$$ sqrt $\{s\}$ \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	11

#	Article	IF	CITATIONS
145	Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in protonâ \in "proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$ s = 13 Te. European Physical Journal C, 2019, 79, 280.	3.9	29
146	Search for contact interactions and large extra dimensions in the dilepton mass spectra from proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	13
147	Search for vector-like quarks in events with two oppositely charged leptons and jets in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$ s = 13 Te. European Physical Journal C, 2019, 79, 364.	3.9	48
148	Walking technicolor in light of Z′ searches at the LHC. Physical Review D, 2019, 99, .	4.7	4
149	Search for single production of vector-like quarks decaying to a top quark and a \$\$mathrm {W} \$\$ W boson in proton–proton collisions at \$\$sqrt{s} = 13 ,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2019, 79, 90.	3.9	34
150	Study of the underlying event in top quark pair production in \$\$mathrm {p}mathrm {p}\$\$ p p collisions at 13 \$\$~ext {Te}ext {V}\$\$ Te. European Physical Journal C, 2019, 79, 123.	3.9	11
151	Search for rare decays of $\$$ mathrm {Z}\$\$ Z and Higgs bosons to $\$$ {mathrm {J}/psi } \$\$ J / $\ddot{\Gamma}$ and a photon in proton-proton collisions at $\$$ sqrt{s}\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2019, 79, 94.	3.9	20
152	Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	15
153	Measurements of \$\$ mathrm{t}overline{mathrm{t}} \$\$ differential cross sections in proton-proton collisions at \$\$ $\frac{1}{2} = 13 $ \$ TeV using events containing two leptons. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28
154	Search for \$\$ mathrm{t}overline{mathrm{t}}mathrm{H} \$\$ production in the \$\$ mathrm{H}o mathrm{b}overline{mathrm{b}} \$\$ decay channel with leptonic \$\$ mathrm{t}overline{mathrm{t}} \$\$ decays in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28
155	Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}$ = 13 $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	6
156	Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at $$$ sqrt ${s}=13$ $$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	14
157	Search for resonant $\$ mathrm{t}overline{mathrm{t}} \$\$ production in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	23
158	Search for production of Higgs boson pairs in the four b quark final state using large-area jets in proton-proton collisions at $\$\$$ sqrt $\{s\}=13$ $\$\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	14
159	Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	12
160	Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at $\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	40
161	Measurement of differential cross sections for inclusive isolated-photon and photon+jet production in proton-proton collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s = 13 TeV. European Physical Journal C, 2019, 79, 20.	3.9	18
162	Interplay of the LHC and non-LHC dark matter searches in the effective field theory approach. Physical Review D, 2019, 99, .	4.7	27

#	Article	IF	Citations
163	Advancing LHC probes of dark matter from the inert two-Higgs-doublet model with the monojet signal. Physical Review D, 2019, 99, .	4.7	38
164	Search for resonances decaying to a pair of Higgs bosons in the b\$\$ overline{mathrm{b}} \$\$q\$\$ overline{mathrm{q}} \$\$'â,,"ν final state in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	10
165	Measurements of triple-differential cross sections for inclusive isolated-photon+jet events in $\mbox{\$mathrm{p}}$ collisions at $\mbox{\$sqrt{s}} = 8$,ext {TeV} \\$. European Physical Journal C, 2019, 79, 969.	3.9	6
166	Measurement of the differential Drell-Yan cross section in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	18
167	Search for the production of four top quarks in the single-lepton and opposite-sign dilepton final states in proton-proton collisions at $$$ sqrt{s} $$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	11
168	Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton-proton collisions at $\$$ sqrt $\{s\}=13$,ext $\{TeV\}$ $\$$. European Physical Journal C, 2019, 79, 893.	3.9	12
169	Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum. Journal of High Energy Physics, 2019, 2019, 1.	4.7	54
170	Search for new physics in top quark production in dilepton final states in proton-proton collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s. European Physical Journal C, 2019, 79, 886.	3.9	16
171	Search for dark photons in decays of Higgs bosons produced in association with Z bosons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	13
172	Search for supersymmetry using Higgs boson to diphoton decays at $\$\$ $ sqrt $\{s\}$ $\$\$ = 13$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	4
173	Measurements of differential Z boson production cross sections in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28
174	Search for anomalous triple gauge couplings in WW and WZ production in lepton + jet events in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	15
175	Study of the $\$ {mathrm{B}}^{+}o mathrm{J}/uppsi overline{Lambda}mathrm{p} \$\$ decay in proton-proton collisions at \$\$ sqrt{s} \$\$ = 8 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	3
176	Anatomy of the inert two-Higgs-doublet model in the light of the LHC and non-LHC dark matter searches. Physical Review D, 2018, 97, .	4.7	125
177	Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at \$\$\$qrt{s}=7\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2018, 78, 242.	3.9	10
178	Pseudorapidity distributions of charged hadrons in proton-lead collisions at s N N = $5.02 \$\$$ sqrt{s_{mathrm{NN}}}= $5.02 \$\$$ and 8.16 TeV . Journal of High Energy Physics, 2018, 2018, 1.	4.7	8
179	Search for resonant and nonresonant Higgs boson pair production in the b b $\hat{A}^ \hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ // $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ // $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ // $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ // $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ // $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ // $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " \hat	4.7	36
180	Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in protonâ \in "proton collisions at \$\$sqrt{s} \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 291.	3.9	27

#	Article	IF	Citations
181	Measurements of the $\mbox{mathrm {p}}$ mathrm {p} ightarrow mathrm{Z} mathrm{Z}\$\$ p p → Z Z production cross section and the \mbox{mathrm} mathrm{Z} ightarrow 4ell \$\$ Z → 4 â,," branching fraction, and constraints on anomalous triple gauge couplings at. European Physical Journal C, 2018, 78, 165.	3.9	52
182	Measurement of associated Z + charm production in proton–proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 287.	3.9	16
183	Measurement of the inclusive $\$ mathrm{t}overline{mathrm{t}} \$\$ cross section in pp collisions at \$\$ sqrt{s}=5.02 \$\$ TeV using final states with at least one charged lepton. Journal of High Energy Physics, 2018, 2018, 1.	4.7	5
184	Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at $\$$ sqrt $\{s\}=8$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	0
185	Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $s=13$ \$\$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	5
186	Search for supersymmetry in events with at least three electrons or muons, jets, and missing transverse momentum in proton-proton collisions at $s=13 \$ sqrt $\{s\}=13 \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	6
187	Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	57
188	Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	63
189	Measurement of differential cross sections in the kinematic angular variable i for inclusive Z boson production in pp collisions at \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	4
190	Comparing transverse momentum balance of b jet pairs in pp and PbPb collisions at $\$$ sqrt $s_{NN}\}=5.02 \$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	12
191	Measurement of normalized differential $\$ mathrm{t}overline{mathrm{t}} \$\$ cross sections in the dilepton channel from pp collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	18
192	Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
193	Search for ZZ resonances in the $2\hat{a}$, " $2\hat{l}/2$ final state in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	4
194	Problems with Higgsplosion. Physical Review D, 2018, 98, .	4.7	7
195	Search for $\$$ mathrm $\{t\}$ overline $\{mathrm\{t\}\}$ mathrm $\{H\}$ $\$$ production in the all-jet final state in proton-proton collisions at $\$$ sqrt $\{s\}$ =13 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20
196	Search for resonances in the mass spectrum of muon pairs produced in association with b quark jets in proton-proton collisions at $\$$ sqrt $\{s\}$ =8 $\$$ and 13 TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	9
197	Measurement of the groomed jet mass in PbPb and pp collisions at $\$$ sqrt{s_{mathrm{NN}}}=5.02 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	12
198	Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks at $$$ sqrt ${s}=13$ \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	11

#	Article	IF	CITATIONS
199	Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $$$ sqrt ${s}=13$ $$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	19
200	Search for natural and split supersymmetry in proton-proton collisions at $\$\$$ sqrt $\$\$$ TeV in final states with jets and missing transverse momentum. Journal of High Energy Physics, 2018, 2018, 1.	4.7	43
201	Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	12
202	Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two \ddot{l} , leptons in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	34
203	Search for a charged Higgs boson decaying to charm and bottom quarks in proton-proton collisions at \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	26
204	Search for top squarks decaying via four-body or chargino-mediated modes in single-lepton final states in proton-proton collisions at $$$ sqrt ${s}=13 $ \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	13
205	Charged-particle nuclear modification factors in XeXe collisions at $\$$ sqrt $\{s_{NN}\}$ = 5.44 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
206	Measurement of the top quark mass with lepton+jets final states using $\$$ mathrm {p} $\$$ mathrm {p} $\$$ s collisions at $\$$ sqrt{s}=13,ext {TeV} $\$$ s. European Physical Journal C, 2018, 78, 891.	3.9	34
207	Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	18
208	Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	57
209	Event shape variables measured using multijet final states in proton-proton collisions at $\$\$$ sqrt $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	4
210	Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at $$$ sqrt ${s}=13$ \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	23
211	Search for narrow and broad dijet resonances in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV and constraints on dark matter mediators and other new particles. Journal of High Energy Physics, 2018, 2018, 1.	4.7	82
212	Search for $Z\hat{I}^3$ resonances using leptonic and hadronic final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
213	Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
214	Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at $\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	14
215	Search for supersymmetry in events with a Ï,, lepton pair and missing transverse momentum in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	21
216	Search for the decay of a Higgs boson in the \hat{a} , " \hat{a} ," " \hat{i} " channel in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17

#	Article	IF	Citations
217	Search for third-generation scalar leptoquarks decaying to a top quark and a $\$$ au $\$$ i, lepton at $\$$ quark $\{$ Te $\}$ ext $\{$ V $\}$ \$\$ s = 13 Te. European Physical Journal C, 2018, 78, 707.	3.9	46
218	Measurement of differential cross sections for $\{Z\}$ $\{Z\}$ boson production in association with jets in proton-proton collisions at $\{Z\}$	3.9	39
219	Studies of \$\${mathrm {B}} ^{*}_{{mathrm {s}}2}(5840)^0 \$\$ B s 2 \hat{a} — (5840) 0 and \$\${mathrm {B}}		

#	Article	IF	CITATIONS
235	Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	35
236	Search for beyond the standard model Higgs bosons decaying into a $\$\$$ mathrm $\{b\}$ overline $\{mathrm\{b\}\}$ $\$\$$ pair in pp collisions at $\$\$$ sqrt $\{s\}=13$ $\$\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	21
237	Measurement of the weak mixing angle using the forward–backward asymmetry of Drell–Yan events in \$\$mathrm {p}mathrm {p}\$\$ p p collisions at 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 701.	3.9	58
238	Measurement of prompt and nonprompt charmonium suppression in $\$$ ext {PbPb} $\$$ collisions at 5.02 $\$$,ext {Te}ext {V} $\$$ \$. European Physical Journal C, 2018, 78, 509.	3.9	83
239	Search for lepton flavour violating decays of the Higgs boson to $\hat{l}^{1}\!\!/\!\!a _{n}$ and $\hat{e} _{n}$ in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	29
240	Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying \ddot{l} , leptons at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	38
241	Electroweak production of two jets in association with a Z boson in protonâ \in proton collisions at \$\$sqrt{s}= \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 1.	3.9	17
242	Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer. Journal of High Energy Physics, 2018, 2018, 1.	4.7	29
243	Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20
244	Search for single production of vector-like quarks decaying to a b quark and a Higgs boson. Journal of High Energy Physics, 2018, 2018, 1.	4.7	16
245	Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at $$$ sqrt ${s}=13 $ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	23
246	Search for a singly produced third-generation scalar leptoquark decaying to a $\ddot{\text{I}}$, lepton and a bottom quark in proton-proton collisions at \$\$ $\sqrt{s}=13 $ \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	15
247	Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at $$$ sqrt ${s}=13$ $$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	13
248	Measurement of the inelastic proton-proton cross section at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	62
249	Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	31
250	Search for high-mass resonances in dilepton final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	86
251	Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $s=13 $ \$ sqrt $s=13 $ \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	42
252	Jet properties in PbPb and pp collisions at $\$$ sqrt{s_{mathrm{N};mathrm{N}}}=5.02 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	13

#	Article	IF	CITATIONS
253	Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	37
254	Search for standard model production of four top quarks with same-sign and multilepton final states in protonâ \in "proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 140.	3.9	44
255	Measurement of b hadron lifetimes in pp collisions at $\$$ sqrt $\{s\}$ = 8 $\$$ s = 8 $\$$,ext $\{Te\}$ ext $\{V\}$ \$\$ TeV. European Physical Journal C, 2018, 78, 457.	3.9	15
256	Measurements of the (mathrm {p}mathrm {p}ightarrow mathrm{Z}mathrm{Z}) production cross section and the (mathrm{Z}ightarrow 4ell) branching fraction, and constraints on anomalous triple gauge couplings at (sqrt{s} = 13,ext {TeV})., 2018, 78, 1.		3
257	Measurement of b hadron lifetimes in pp collisions at (sqrt $\{s\} = 8$) (,ext $\{Te\}$ ext $\{V\}$)., 2018, 78, 1.		1
258	Measurements of the $\mbox{mathrm{t}}$ overline{mathrm{t}}\$\$ t t $\mbox{\^A}^-$ production cross section in lepton+jets final states in pp collisions at 8 \$\$,ext {TeV}\$\$ TeV and ratio of 8 to 7 $\mbox{\^A}$ \$\$,ext {TeV}\$\$ TeV cross sections. European Physical Journal C, 2017, 77, 15.	3.9	34
259	Measurement of the $\mbox{mathrm{t}}$ overline{mathrm{t}} \$\$ t t \mbox{A}^- production cross section using events in the \$\$mathrm {e}mu \$\$ e $\mbox{I}\sqrt{4}$ final state in pp collisions at \$\$sqrt{s}=13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2017, 77, 172.	3.9	40
260	Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV and cross section ratios to 2.76 and 7 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	54
261	Search for electroweak production of charginos in final states with two $\ddot{\ }$, leptons in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11
262	Measurement of the production cross section of a WÂboson in association with two b jets in pp collisions at $\$$ sqrt{s} = 8{,mathrm{{TeV}}} \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 92.	3.9	16
263	Measurement of the WZ production cross section in pp collisions at $\$$ sqrt $\{s\} = 7$ \$ s = 7 and 8 $\$$,ext $\{TeV\}$ \$ TeV and search for anomalous triple gauge couplings at $\$$ sqrt $\{s\} = 8$,ext $\{TeV\}$ \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 236.	3.9	37
264	Measurement of prompt and nonprompt $\$$ mathrm{J}/{psi}\$\$J/ $\ddot{\Gamma}$ production in $\$$ mathrm {p}mathrm {p}\$\$ p p and $\$$ mathrm {p}mathrm {Pb}\$\$ p Pb collisions at $\$$ qrt{s_{mathrm {NN}}} =5.02,ext {TeV} \$\$ s. European Physical Journal C, 2017, 77, 269.	3.9	53
265	A search for new phenomena in pp collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s = 13 TeV in final states with missing transverse momentum and at least one jet using the $\$$ alpha $_{\text{mathrm }}$ $\{T\}$ \$\$ \hat{l} ± T variable. European Physical Journal C, 2017, 77, 294.	3.9	29
266	Search for new physics in the monophoton final state in proton-proton collisions at $s=13 $ \$\$ $sqrt\{s\}=13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
267	Measurement of double-differential cross sections for top quark pair production in pp collisions at $s=8$ s = 8 \$\$,ext {TeV}\$\$ TeV and impact on parton distribution functions. European Physical Journal C, 2017, 77, 459.	3.9	52
268	Measurement of the jet mass in highly boosted ${\rm mathrm\{t\}}$ overline {mathrm{t}}\$\$ events from pp collisions at ${\rm sqrt\{s\}=8}$, ext {TeV}\$\$. European Physical Journal C, 2017, 77, 467.	3.9	23
269	Charged-particle nuclear modification factors in PbPb and pPb collisions at s N N = $5.02 \$\$$ sqrt{s_{mathrm{N};mathrm{N}}}= $5.02 \$\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	103
270	Search for t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22

#	Article	IF	CITATIONS
271	Search for associated production of dark matter with a Higgs boson decaying to b b \hat{A}^- \$\$ mathrm{b}overline{mathrm{b}} \$\$ or $\hat{I}^3\hat{I}^3$ at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
272	Observation of Y(1S) pair production in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	48
273	Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at $s = 7 $ \$\$ sqrt $s = 7 $ \$\$ and 8 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	35
274	Search for single production of vector-like quarks decaying to a Z boson and a top or a bottom quark in proton-proton collisions at $s=13 $ \$\$ sqrt $\{s\}=13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	13
275	Dark Matter characterization at the LHC in the Effective Field Theory approach. Journal of High Energy Physics, 2017, 2017, 1.	4.7	18
276	Measurement of the semileptonic t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ + \hat{I}^3 production cross section in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11
277	Measurements of the pp \hat{a} †' $\hat{W}^{\hat{j}\hat{j}\hat{j}}$ and pp \hat{a} †' $\hat{Z}^{\hat{j}\hat{j}\hat{j}}$ cross sections and limits on anomalous quartic gauge coupling at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	^S 4.7	10
278	Search for new phenomena with the \$\$M_{mathrm {T2}}\$\$ M T 2 variable in the all-hadronic final state produced in proton–proton collisions at \$\$sqrt{s} = 13\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 710.	3.9	98
279	Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
280	Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at $s=13 $ \$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
281	Search for electroweak production of a vector-like quark decaying to a top quark and a Higgs boson using boosted topologies in fully hadronic final states. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
282	Di-boson signatures as standard candles for partial compositeness. Journal of High Energy Physics, 2017, 2017, 1.	4.7	54
283	Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at $s=8$ \$\$ sqrt{ s }=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
284	Suppression and azimuthal anisotropy of prompt and nonprompt $f(J)^r$ production in PbPb collisions at $f(L)^r$ production PbPb collisions at $f(L)^r$ production Physical Journal C, 2017, 77, 252.	3.9	82
285	Searches for pair production of third-generation squarks in $\$$ sqrt $\{s\}=13$ \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV pp collisions. European Physical Journal C, 2017, 77, 327.	3.9	32
286	Measurement of the top quark mass using single top quark events in proton-proton collisions at $s=8$ and $s=8$ are $s=8$ are ATeV. European Physical Journal C, 2017, 77, 354.	3.9	23
287	Searches for invisible decays of the Higgs boson in pp collisions at s $\$\$$ sqrt $\{s\}$ $\$\$$ = 7, 8, and 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	95
288	Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at $s = 13 $ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22

#	Article	lF	CITATIONS
289	Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at $\$$ sqrt $\{s\}$ = 13,ext $\{TeV\}$ $\$$ s = 13 TeV. European Physical Journal C, 2017, 77, 845.	3.9	38
290	Measurement of electroweak-induced production of $W\hat{l}^3$ with two jets in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV and constraints on anomalous quartic gauge couplings. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
291	Searches for Wâ \in 2 bosons decaying to a top quark and a bottom quark in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	8
292	Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at $s=13 $ \$\$ sqrt $\{s\}=13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	10
293	Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at $s=13$ \$\$ $sqrt{s}=13$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
294	Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
295	Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at $\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	27
296	Search for top squark pair production in pp collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV using single lepton events. Journal of High Energy Physics, 2017, 2017, 1.	4.7	31
297	Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
298	Measurement of the t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section using events with one lepton and at least one jet in pp collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
299	Search for a heavy resonance decaying to a top quark and a vector-like top quark at $s=13 \$\$$ sqrt $\{s\}=13 \$\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	5
300	Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in protonâ \in "proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2017, 77, 578.	3.9	57
301	Search for top quark partners with charge $5/3$ in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	3
302	Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at $s=8$ \$\$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	29
303	Measurements of jet charge with dijet events in pp collisions at $s = 8 $ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
304	Search for associated production of a Z boson with a single top quark and for tZ flavour-changing interactions in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	21
305	Search for new physics with dijet angular distributions in proton-proton collisions at $s=13~$ \$\$ sqrt $\{s\}=13~$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
306	Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at s = $13 \$$ sqrt $\{s\}=13 \$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	62

#	Article	IF	CITATIONS
307	Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $s=13 $ \$ sqrt{ $s}=13 $ \$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	41
308	Search for new phenomena with multiple charged leptons in proton–proton collisions at \$\$sqrt{s}= 13\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 1.	3.9	2
309	Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at $\$$ sqrt $\{s\} = 13$ \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 636.	3.9	38
310	Search for high-mass $Z\hat{l}^3$ resonances in e+eâ ⁻ ' \hat{l}^3 and $\hat{l}^1/4 + \hat{l}^1/4$ â ⁻ ' \hat{l}^3 final states in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ and 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	\$ 4.7	7
311	Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying \ddot{l} , leptons and two jets in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
312	Search for CP violation in t t \hat{A}^- \$\$ toverline{t} \$\$ production and decay in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	4
313	Measurement of the triple-differential dijet cross section in proton-proton collisions at $\$$ sqrt $\{s\}$ =8,ext $\{TeV\}$ $\$$ s = 8 TeV and constraints on parton distribution functions. European Physical Journal C, 2017, 77, 746.	3.9	23
314	Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	10
315	Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $s = 13 $ \$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
316	Radioactive source calibration test of the CMS Hadron Endcap Calorimeter test wedge with Phase I upgrade electronics. Journal of Instrumentation, 2017, 12, P12034-P12034.	1.2	0
317	Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	101
318	Measurements of the associated production of a Z boson and b jets in pp collisions at $\$\{qrt\{s\}\} = 8,ext\{TeV\}$ \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 751.	3.9	30
319	Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV using H â†' WW decays. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11
320	Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
321	Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at s N N = $2.76 $ \$\$ sqrt{s_{mathrm{N};mathrm{N}}}= $2.76 $ \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	18
322	Measurement of the double-differential inclusive jet cross section in proton–proton collisions at $\$$ sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2016, 76, 451.	3.9	55
323	Measurement of the $f(w)^{-1} \$ mathrm $f(w)^{-1} \$ W + W - cross section in pp collisions at $f(w) = 8$ s = 8 TeVand limits on anomalous gauge couplings. European Physical Journal C, 2016, 76, 401.	3.9	74
324	Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks. European Physical Journal C, 2016, 76, 371.	3.9	33

#	Article	IF	CITATIONS
325	Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width. Journal of High Energy Physics, 2016, 2016, 1.	4.7	17
326	Search for lepton flavour violating decays of heavy resonances and quantum black holes to an \$\$mathrm {e}mu \$\$ e μ pair in proton–proton collisions at \$\$sqrt{s}=8~ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 317.	3.9	16
327	Measurement of electroweak production of a W boson and two forward jets in proton-proton collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	5
328	Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter. Journal of Instrumentation, 2016, 11, T10004-T10004.	1.2	17
329	Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at s N N = 2.76 \$\$ sqrt{s_{mathrm{NN}}}= 2.76 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	31
330	Search for anomalous single top quark production in association with a photon in pp collisions at s = $8 $ \$\$ sqrt{s}= $8 $ \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	27
331	Search for direct pair production of scalar top quarks in the single- and dilepton channels in proton-proton collisions at $s = 8 $ \$\$ sqrt{ s }= $8 $ \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	7
332	Search for the associated production of a Higgs boson with a single top quark in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	13
333	Forward–backward asymmetry of Drell–Yan lepton pairs in pp collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,mathrm{TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 325.	3.9	25
334	Search for new physics in same-sign dilepton events in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2016, 76, 439.	3.9	64
335	Measurement of dijet azimuthal decorrelation in ppÂcollisions at $\$$ sqrt $\{s\}$ =8,mathrm $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 536.	3.9	16
336	Search for dark matter particles in proton-proton collisions at $s = 8 $ \$\$ sqrt{s}=8 \$\$ TeV using the razor variables. Journal of High Energy Physics, 2016, 2016, 1.	4.7	4
337	Search for s channel single top quark production in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	14
338	Measurement of inclusive jet production and nuclear modifications in pPb collisions at $\frac{s_{mathrm {NN}}}{5.02,mathrm{TeV}} $ s NN. European Physical Journal C, 2016, 76, 372.	3.9	29
339	Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	19
340	Measurement of the t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section in the ell/4 channel in proton-proton collisions at s = 7 \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	41
341	Search for new physics with the M T2 variable in all-jets final states produced in pp collisions at s = 13 \$\$ sqrt{s}= 13 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	17
342	Singlets in composite Higgs models in light of the LHC 750ÂGeV diphoton excess. Physical Review D, 2016, 94, .	4.7	33

#	Article	IF	CITATIONS
343	Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets. Journal of High Energy Physics, 2016, 2016, 1.	4.7	13
344	Evidence for exclusive $\hat{1}^3\hat{1}^3$ \hat{a}^4 , $W+W$ \hat{a}^2 production and constraints on anomalous quartic gauge couplings in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	42
345	Search for supersymmetry in pp collisions at $s=13 $ \$\$ sqrt $\{s\}=13 $ \$\$ TeV in the single-lepton final state using the sum of masses of large-radius jets. Journal of High Energy Physics, 2016, 2016, 1.	4.7	14
346	Search for direct pair production of supersymmetric top quarks decaying to all-hadronic final states in pp collisions at $\$\$qrt{s} = 8;ext {TeV} \$ s = 8 TeV$. European Physical Journal C, 2016, 76, 460.	3.9	18
347	Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	20
348	Phenomenological MSSM interpretation of CMS searches in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	12
349	Measurement of the mass of the top quark in decays with a J/l^ meson in pp collisions at 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	6
350	Measurement of the inclusive jet cross section in pp collisions at $\$\$qrt\{s\} = 2.76$,ext $\{TeV\}$ s = 2.76 TeV. European Physical Journal C, 2016, 76, 1.	3.9	26
351	Measurement of \$\$mathrm {t}overline{mathrm {t}}\$\$ t t \hat{A}^- production with additional jet activity, including \$\$mathrm {b}\$\$ b quark jets, in the dilepton decay channel using pp collisions at \$\$sqrt{s} = 8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 379.	3.9	34
352	Measurement of the differential cross section and charge asymmetry for inclusive $\mbox{mathrm } \{p\}$ mathrm $\{p\}$ ightarrow mathrm $\{W\}^{p} + X$ p p → $\mathbb{R}^2 \times \mathbb{R}^2 \times $	3.9	83
353	Observation of top quark pairs produced in association with a vector boson in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	23
354	Towards model-independent exclusion of light Stops. Journal of High Energy Physics, 2016, 2016, 1.	4.7	8
355	Forward-backward asymmetry as a discovery tool for Z′ bosons at the LHC. Journal of High Energy Physics, 2016, 2016, 1.	4.7	28
356	Search for Wâ \in 2 â†' tb in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	3
357	Correlations between jets and charged particles in PbPb and pp collisions at s N N = $2.76 \$\$$ sqrt $\{s_{nathrm{NN}}\}=2.76 \$\$$ TeV. Journal of High Energy Physics, 2016 , 2016 , 1 .	4.7	29
358	Search for the production of an excited bottom quark decaying to tW in proton-proton collisions at $s = 8 $ \$\$ sqrt s =8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	5
359	Hunting for neutral, long-lived exotica at the LHC using a missing transverse energy signature. Journal of High Energy Physics, 2016, 2016, 1.	4.7	1
360	Search for excited leptons in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	16

#	Article	IF	Citations
361	Measurement of the $\mbox{mathrm}{t}$ overline ${\{mathrm}{t}\}$ \$\$ t t $\mbox{$\hat{A}^{-}$}$ production cross section in the all-jets final state in pp collisions at \$\$sqrt{s}=8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 128.	3.9	41
362	Event generator tunes obtained from underlying event and multiparton scattering measurements. European Physical Journal C, 2016, 76, 155.	3.9	499
363	Search for massive WH resonances decaying into the \$\$ell u mathrm{b} overline{mathrm{b}} \$\$ â,, $\hat{l}/2$ b b \hat{A}^- final state at \$\$sqrt{s}=8\$\$ s = 8 \$\$~ext {TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 237.	3.9	30
364	Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at $s = 8 $ \$\$ sqrt{ s }=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	16
365	Measurement of top quark polarisation in t-channel single top quark production. Journal of High Energy Physics, 2016, 2016, 1.	4.7	15
366	Search for heavy Majorana neutrinos in $e\hat{A}\pm e\hat{A}\pm + jets$ and $e\hat{A}\pm \hat{I}\sqrt{4}$ $\hat{A}\pm + jets$ events in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	35
367	Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into \ddot{l}_{s} , leptons in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	19
368	Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $\$$ sqrt $\{s\}=8$,ext $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 13.	3.9	62
369	Search for new physics in final states with two opposite-sign, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	8
370	XQCAT: eXtra Quark Combined Analysis Tool. Computer Physics Communications, 2015, 197, 263-275.	7.5	12
371	Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp collisions at s $$$ sqrt ${s}$ $$$ = 8 TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24
372	Search for third-generation scalar leptoquarks in the $t\ddot{i}$, channel in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24
373	Uncovering Natural Supersymmetry via the interplay between the LHC and direct Dark Matter detection. Journal of High Energy Physics, 2015, 2015, 1.	4.7	65
374	Quantum black holes and their lepton signatures at the LHC with CalCHEP. Journal of High Energy Physics, 2015, 2015, 1.	4.7	4
375	Interplay and characterization of Dark Matter searches at colliders and in direct detection experiments. Physics of the Dark Universe, 2015, 9-10, 51-58.	4.9	40
376	Searches for supersymmetry using the M T2 variable in hadronic events produced in pp collisions at 8 TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	34
377	Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	37
378	Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	20

#	Article	IF	Citations
379	Search for a charged Higgs boson in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	81
380	Search for supersymmetry in the vector-boson fusion topology in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	12
381	Search for a light charged Higgs boson decaying to c s \hat{A}^- \$\$ mathrm{c}overline{mathrm{s}} \$\$ in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1-37.	4.7	44
382	Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24
383	Search for neutral color-octet weak-triplet scalar particles in proton-proton collisions at $s=8$ \$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	1
384	Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons. Journal of High Energy Physics, 2015, 2015, 1.	4.7	92
385	Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 212.	3.9	541
386	Measurement of the $Z\hat{I}^3$ production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings. Journal of High Energy Physics, 2015, 2015, 1.	4.7	11
387	Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeVÂand determination of the strong coupling constant in the TeVÂrange. European Physical Journal C, 2015, 75, 186.	3.9	68
388	Measurement of the differential cross section for top quark pair production in pp collisions at $s=8$, ext TeV \$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 542.	3.9	191
389	Measurements of the \frac{Z} $2 $ \frac{Z} $2 $ $2 $ Measurements of the $2 $ $2 $ $2 $ $2 $ $2 $ $2 $ $2 $ $2 $	3.9	32
390	Simplified models for dark matter searches at the LHC. Physics of the Dark Universe, 2015, 9-10, 8-23.	4.9	250
391	Comparison of the Z/\hat{I}^3 \hat{a} — + jets to \hat{I}^3 + jets cross sections in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	6
392	Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks. Journal of High Energy Physics, 2015, 2015, 1.	4.7	30
393	Search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks using a matrix element method. European Physical Journal C, 2015, 75, 251.	3.9	73
394	Measurement of electroweak production of two jets in association with a Z boson in proton–proton collisions at \$\$sqrt{s}=8,ext {TeV}\$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 66.	3.9	31
395	Measurements of differential and double-differential Drellâ€"Yan cross sections in protonâ€"proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 147.	3.9	88
396	Search for decays of stopped long-lived particles produced in proton–proton collisions at \$\$sqrt{s}= 8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 151.	3.9	44

#	Article	IF	CITATIONS
397	Measurement of the W boson helicity in events with a single reconstructed top quark in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1. Measurement of the ratio of the production cross sections times branching fractions of B c ±  → JſŸi€ A	4.7 ±	26
398	and B± → J/l̈́ A± and â,,¬ B c ± → J / l̈́ l̈€ ± l̈€ ± l̈€ ∑' / â,,¬ B c ± → J / l̈ l̄€ ± \$\$ mathrm{mathcal{B}}left({mathrm{B}}_{mathrm{c}}^{pm}o mathrm{J}/psi {pi}^{pm} }{pi}^{pm} Tj ETQq0 0 0 rg		ock 10 Tf 50
399	2015, 1. Search for disappearing tracks in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	46
400	Study of Z production in PbPb and pp collisions at s N N = $2.76 \$\$ $ sqrt $\{s_{NN}\}\}=2.76 \$\$ $ TeV in the dimuon and dielectron decay channels. Journal of High Energy Physics, 2015, 2015, 1.	4.7	27
401	Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at $s = 8 $ \$ sqrt $s=8 $ \$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	78
402	Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at $s=2.76$ \$\$ sqrt{s}=2.76 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	10
403	Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,{mathrm{TeV}},\$\$ TeV. European Physical Journal C, 2015, 75, 235.	3.9	320
404	Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $\$$ sqrt $\{s\} = 7$ \$ $s = 7$ \$,ext $\{TeV\}$ \$\$ TeV. European Physical Journal C, 2015, 75, 288.	3.9	54
405	Nuclear effects on the transverse momentum spectra of charged particles in pPb collisions at \$\$\$qrt{s_{_mathrm {NN}}} =5.02\$\$ s NN = 5.02 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 237.	3.9	58
406	Distributions of topological observables in inclusive three- and four-jet events in pp collisions at $s=7$ s = 7 s,ext {TeV}\$ TeV. European Physical Journal C, 2015, 75, 302.	3.9	6
407	Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton–proton collisions at \$\$sqrt{s} =8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 325.	3.9	43
408	Search for heavy neutrinos and $\$$ mathrm $\{W\}$ $\$$ $\$$ bosons with right-handed couplings in protonâ \in "proton collisions at $\$$ sqrt $\{s\}$ = 8,ext $\{TeV\}$ $\$$ $\$$ $\$$ $\$$ = 8 TeV. European Physical Journal C, 2014, 74, 3149.	3.9	179
409	Measurement of top quark–antiquark pair production in association with a W or Z boson in pp collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2014, 74, 3060.	3.9	43
410	Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at $\$$ sqrt $\{s\}$ =7,ext $\{TeV\}$ $\$$ s = 7 TeV. European Physical Journal C, 2014, 74, 3129.	3.9	65
411	Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions. Journal of High Energy Physics, 2014, 2014, 1.	4.7	81
412	Measurement of pseudorapidity distributions of charged particles in proton–proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 ÂTeV by the CMS and TOTEM experiments. European Physical Journal C, 2014, 74, 1.	3.9	49
413	Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8ÂTeV. European Physical Journal C, 2014, 74, 3036.	3.9	241
414	Measurement of prompt J/ $\hat{\Gamma}$ pair production in pp collisions at s \$\$ sqrt{s} \$\$ = 7 Tev. Journal of High Energy Physics, 2014, 2014, 1.	4.7	61

#	Article	IF	Citations
415	Observation of the diphoton decay of the Higgs boson and measurement of its properties. European Physical Journal C, 2014, 74, 3076.	3.9	342
416	Search for the associated production of the Higgs boson with a top-quark pair. Journal of High Energy Physics, 2014, 2014, 1.	4.7	51
417	Study of hadronic event-shape variables in multijet final states in pp collisions at $s = 7 $ \$\$ sqrt{s} = 7 \$\$ TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	3
418	Search for standard model production of four top quarks in the lepton $+$ jets channel in pp collisions at $s=8$ \$\$ sqrt{ s }= 8 \$\$ TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	17
419	Framework for model independent analyses of multiple extra quark scenarios. Journal of High Energy Physics, 2014, 2014, 1.	4.7	35
420	Identification techniques for highly boosted W bosons that decay into hadrons. Journal of High Energy Physics, 2014, 2014, 1.	4.7	43
421	Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states. Journal of High Energy Physics, 2014, 2014, 1.	4.7	169
422	Measurement of the $\$ toverline $\{t\}$ $\$ production cross section in the dilepton channel in pp collisions at $\$ sqrt $\{s\}$ $\$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	52
423	Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $q=1.76$ TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	77
424	Measurement of associated W + charm production in pp collisions at sqrts = 7 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	55
425	Search for new physics in events with same-sign dileptons and jets in pp collisions at $\$ sqrt{s} $\$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	48
426	Technicolor Higgs boson in the light of LHC data. Physical Review D, 2014, 90, .	4.7	25
427	Studies of dijet transverse momentum balance and pseudorapidity distributions in pPb collisions at $\frac{s}{TeV}$ TeV. European Physical Journal C, 2014, 74, 1.	3.9	75
428	Measurement of WZ and ZZ production in pp collisions at $\$$ sqrt $\{s\}$ = 8,ext $\{TeV\}$ $\$$ s = 8 TeV in final states with b-tagged jets. European Physical Journal C, 2014, 74, 2973.	3.9	23
429	Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes. European Physical Journal C, 2014, 74, 2980.	3.9	171
430	Measurement of jet multiplicity distributions in $\frac{t}{\text{TeV}} $ s = 7 TeV. European Physical Journal C, 2014, 74, 3014.	3.9	16
431	Study of double parton scattering using W + 2-jet events in proton-proton collisions at $\$ sqrt{s} = 7 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	85
432	Event activity dependence of $Y $ (nS) production in $q $ sqrt{ $q $ sqrt{} s	4.7	56

#	Article	IF	Citations
433	Measurements of the \$ mathrm{t}overline{mathrm{t}} \$ charge asymmetry using the dilepton decay channel in pp collisions at \$ $qt{s} = 7$ TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	20
434	Light sfermion interplay in the 125 GeV MSSM Higgs production and decay at the LHC. Journal of High Energy Physics, 2014, 2014, 1.	4.7	12
435	Evidence for the 125 GeV Higgs boson decaying to a pair of Ï,, leptons. Journal of High Energy Physics, 2014, 2014, 1.	4.7	123
436	Search for $W\hat{a}\in \hat{a}$ \hat{a} to decays in the lepton + jets final state in pp collisions at \$ sqrt{s} \$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	26
437	Measurement of the triple-differential cross section for photon + jets production in proton-proton collisions at $\$ sqrt $\{s\}$ $\$ = 7 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	31
438	Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at $\$ sqrt $\{s\}$ $\$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	100
439	Measurement of the t-channel single-top-quark production cross section and of the $ V tb $ CKM matrix element in pp collisions at \$ sqrt{s} \$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	70
440	Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at s $$$ sqrt ${s}$ $$$ = 7 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	39
441	Search for pair production of excited top quarks in the lepton + jets final state. Journal of High Energy Physics, 2014, 2014, 1.	4.7	4
442	Towards model-independent approach to the analysis of interference effects in pair production of new heavy quarks. Journal of High Energy Physics, 2014, 2014, 1.	4.7	18
443	Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at s $$$ sqrt ${s}$ $$$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	85
444	Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at s $\$ sqrt{s} $\$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	69
445	Measurement of the top-quark mass in all-jets $\frac{1}{2}$ whose $\frac{1}{2}$ mathrm $\frac{1}{2}$ t t \hat{A}^- events in pp collisions at $\frac{1}{2}$ s = 7 TeV. European Physical Journal C, 2014, 74, 2758.	3.9	35
446	Study of the production of charged pions, kaons, and protons in pPb collisions at $\$$ sqrt $\{s_{NN}\} = $ \$\$ s N N = 5.02 \\$,ext \{TeV\}\\$\$ TeV. European Physical Journal C, 2014, 74, 2847.	3.9	85
447	Probing color coherence effects in pp collisions at $\$$ sqrt $\{s\}$ =7,ext $\{TeV\}$ $\$$ s = 7 TeV. European Physical Journal C, 2014, 74, 2901.	3.9	17
448	Measurement of the (toverline{t}) production cross section in the dilepton channel in pp collisions at (sqrt{s}) = 8 TeV., 2014, 2014, 1.		3
449	Search for the associated production of the Higgs boson with a top-quark pair. , 2014, 2014, 1.		6
450	Search for microscopic black holes in pp collisions at $ \sqrt{s}=8 $ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	44

#	Article	IF	CITATIONS
451	Measurement of the \$ Lambda_{mathrm{b}}^0 \$ lifetime in pp collisions at \$ $qt{s}=7 $ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	17
452	Searches for long-lived charged particles in pp collisions at $\$ sqrt $\{s\}$ = 7 and 8 TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	118
453	Study of exclusive two-photon production of W+W \hat{a} in pp collisions at \$ sqrt{s}=7 \$ TeV and constraints on anomalous quartic gauge couplings. Journal of High Energy Physics, 2013, 2013, 1.	4.7	75
454	Observation of a new boson with mass near 125 GeV in pp collisions at $\$ \sqrt{s}=7 \$$ and 8 TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	320
455	Discovering Minimal Universal Extra Dimensions (MUED) at the LHC. Journal of High Energy Physics, 2013, 2013, 1.	4.7	25
456	Search for the standard model Higgs boson produced in association with a top-quark pair in pp collisions at the LHC. Journal of High Energy Physics, 2013, 2013, 1.	4.7	39
457	Studies of jet mass in dijet and W/Z + jet events. Journal of High Energy Physics, 2013, 2013, 1.	4.7	58
458	Measurement of the $\mbox{mathrm}\{t\}$ overline{mathrm} $\{t\}$ } production cross section in the all-jet final state in pp collisions at $\mbox{sqrt}\{s\}=7\mbox{ TeV}$. Journal of High Energy Physics, 2013, 2013, 1.	4.7	16
459	Multiple Higgs and vector boson production beyond the Standard Model. Journal of High Energy Physics, 2013, 2013, 1.	4.7	9
460	Measurement of the X(3872) production cross section via decays to JĨŤĨ€ + Ï€ ∠in pp collisions at \$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	73
461	Exploring Drell-Yan signals from the 4D Composite Higgs Model at the LHC. Journal of High Energy Physics, 2013, 2013, 1.	4.7	27
462	Study of the underlying event at forward rapidity in pp collisions at \$ sqrt{s}=0.9,2.76,;mathrm{and};7;mathrm{TeV} \$. Journal of High Energy Physics, 2013, 2013, 1.	4.7	50
463	Search for new physics in events with photons, jets, and missing transverse energy in pp collisions at \$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	15
464	Search for new physics in events with same-sign dileptons and b jets in pp collisions at $q=0$ \$ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	33
465	Search for exotic resonances decaying into WZ/ZZ in pp collisions at $\$ \sqrt{s}=7 $ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	20
466	Search for supersymmetry in pp collisions at \$sqrt{s} =7\$ TeV in events with a single lepton, jets, and missing transverse momentum. European Physical Journal C, 2013, 73, 2404.	3.9	20
467	Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC. European Physical Journal C, 2013, 73, 2469.	3.9	68
468	Little <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>Z</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:math> models. Physical Review D, 2013, 88, .	4.7	4

#	Article	IF	CITATIONS
469	Measurement of the production cross section for \$ mathrm{Z}gamma o u overline{u}gamma \$ in pp collisions at \$ sqrt{s} = 7 \$ TeV and limits on $ZZ\hat{l}^3$ and $Z\hat{l}^3\hat{l}^3$ triple gauge boson couplings. Journal of High Energy Physics, 2013, 2013, 1.	4.7	14
470	Measurement of the W-boson helicity in top-quark decays from \$ mathrm{t}overline{mathrm{t}} \$ production in lepton+jets events in pp collisions at \$ $q^{t}=7 $ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	30
471	Search for supersymmetry in hadronic final states with missing transverse energy using the variables $\hat{l}\pm T$ and b-quark multiplicity in pp collisions at $\sqrt{s} = 8 \text{ mathrm} $ TeV $\$. European Physical Journal C, 2013, 73, 2568.	3.9	147
472	Measurement of the hadronic activity in events with a Z and two jets and extraction of the cross section for the electroweak production of a Z with two jets in pp collisions at $q=7 $ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	16
473	The 4-Dimensional Composite Higgs Model (4DCHM) and the 125 GeV Higgs-like signals at the LHC. Journal of High Energy Physics, 2013, 2013, 1.	4.7	20
474	What does the CMS measurement of W-polarization tell us about the underlying theory of the coupling of W-bosons to matter?. Journal of High Energy Physics, 2013, 2013, 1.	4.7	10
475	Measurement of masses in the $mathrm{t}$ overline $mathrm{t}$ \$ system by kinematic endpoints in pp collisions at $q=0.013, 73, 2494.$	3.9	55
476	Search for physics beyond the standard model in events with \ddot{l} , leptons, jets, and large transverse momentum imbalance in pp collisions at $\frac{s}{r}$ mathrm{TeV}\$. European Physical Journal C, 2013, 73, 2493.	3.9	22
477	Measurement of the $mathrm{t}ar{mathrm{t}}$ production cross section in the \ddot{i} ,+jets channel in pp collisions at $q=1$ mbox $q=1$ mbox $q=1$ by collisions at $q=1$ mbox $q=1$	3.9	24
478	Jet and underlying event properties as a function of charged-particle multiplicity in proton–proton collisions at \$sqrt {s}= 7 ext{TeV}\$. European Physical Journal C, 2013, 73, 2674.	3.9	32
479			

#	Article	IF	CITATIONS
487	CalcHEP 3.4Âfor collider physics within and beyond the Standard Model. Computer Physics Communications, 2013, 184, 1729-1769.	7.5	738
488	Measurement of the sum of WW and WZ production with W+dijet events in pp collisions at $q=7 \text{ mbox}$ European Physical Journal C, 2013, 73, 2283.	3.9	64
489	Measurement of differential top-quark-pair production cross sections in pp collisions at $q=0$ at $q=0$ mathrm{TeV}\$. European Physical Journal C, 2013, 73, 1.	3.9	125
490	Z ′ at the LHC: interference and finite width effects in Drell-Yan. Journal of High Energy Physics, 2013, 2013, 1.	4.7	46
491	Testing minimal universal extra dimensions using Higgs boson searches at the LHC. Physical Review D, 2013, 87, .	4.7	31
492	Inclusive pion and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î-</mml:mi></mml:math> production in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> +Nb collisions at 3.5 GeV beam energy. Physical	2.9	14
493	Review C, 2013, 88, . Discovering < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:msub> < mml:mi> E < / mml:mi> < mml:mn> 6 < / mml:mn> < / mml:msub> < / mml:math> supersymm models in gluino cascade decays at the LHC. Physical Review D, 2013, 87, .	n etr ic	7
494	LHC physics of extra gauge bosons in the 4D Composite Higgs Model. EPJ Web of Conferences, 2013, 60, 20049.	0.3	1
495	W' and Z' searches at the LHC. , 2013, , .		6
496	Novel gluino cascade decays in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>E</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:math> inspired models. Physical Review D, 2012, 86, .	4.7	12
497	Inclusive b-jet production in pp collisions at \$sqrt {s} = 7TeV\$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	39
498	Search for quark compositeness in dijet angular distributions from pp collisions at sqrt = 7 } TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	18
499	Suppression of non-prompt J/ $\hat{\Gamma}$, prompt J/ $\hat{\Gamma}$, and \$ Upsilon \$(1S) in PbPb collisions at \$ sqrt $\{\{s_{ext}\}\}\}$ = 2.76 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	200
500	Search for heavy bottom-like quarks in 4.9 fb \hat{a} of pp collisions at \$ sqrt {s} = 7 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	45
501	Measurement of the cross section for production of $\$$ boverline b X $\$$ decaying to muons in pp collisions at $\$$ sqrt $\{s\}$ = 7 $\$$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	6
502	Measurement of the $Z/\hat{I}^3*\hat{a}\in \#+\hat{a}\in \#$ b-jet cross section in pp collisions at \$ sqrt {s} = 7 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	39
503	Shape, transverse size, and charged-hadron multiplicity of jets in pp collisions at $\$ qrt{s}=7;TeV \$$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	31
504	Search for anomalous production of multilepton events in pp collisions at sqrt s = 7,TeV S. Journal of High Energy Physics, 2012, 2012, 1.	4.7	68

#	Article	IF	Citations
505	Search for a light charged Higgs boson in top quark decays in pp collisions at sqrt s} = 7;TeV Sournal of High Energy Physics, 2012, 2012, 1.	4.7	117
506	Search for leptonic decays of $W\hat{a}\in^2$ bosons in pp collisions at \$ sqrt {s} = {7} \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	49
507	Search for stopped long-lived particles produced in pp collisions at sqrt s} = ext7TeV} \$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	17
508	Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at $sqrt s = 7$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	30
509	Measurement of the underlying event activity in pp collisions at $\$$ sqrt $\$$ = 0.9 $\$$ and 7 TeV with the novel jet-area/median approach. Journal of High Energy Physics, 2012, 2012, 1.	4.7	13
510	Search for anomalous \$ toverline t \$ production in the highly-boosted all-hadronic final state. Journal of High Energy Physics, 2012, 2012, 1.	4.7	58
511	Search for dark matter and large extra dimensions in monojet events in pp collisions at sqrt s} = 7} TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	168
512	Search for a fermiophobic Higgs boson in pp collisions at $\$$ sqrt $\{s\}$ = 7 $\$$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	15
513	Search for supersymmetry in hadronic final states using M T2 in pp collisions at $\$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	95
514	Measurement of jet fragmentation into charged particles in pp and PbPb collisions at $q=1.76$ sqrt{{ $s_{n}=2.76$ } TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	85
515	Measurement of the \$ mathrm{t}overline{mathrm{t}} \$ production cross section in the dilepton channel in pp collisions at \$ $qt{s}=7 $ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	69
516	Search for exclusive or semi-exclusive $\hat{1}^3\hat{1}^3$ production and observation of exclusive and semi-exclusive e+eâ° production in pp collisions at \$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	51
517	Search for the standard model Higgs boson produced in association with W and Z bosons in pp collisions at \$ sqrt{s}=7 \$TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	7
518	Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	41
519	Search for new physics with long-lived particles decaying to photons and missing energy in pp collisions at $\$ sqrt $\{s\}=7\$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	11
520	Search for resonant $\mbox{mathrm{t}}$ overline{mathrm{t}} $\mbox{production}$ in lepton+jets events in pp collisions at $\mbox{qrt{s}=7 TeV}$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	26
521	Observation of Z decays to four leptons with the CMS detector at the LHC. Journal of High Energy Physics, 2012, 2012, 1.	4.7	34
522	Measurement of the single-top-quark t-channel cross section in pp collisions at $\$ sqrt{s}=7 $\$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	83

#	Article	IF	CITATIONS
523	Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at \$ sqrt{s}=7;TeV \$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	14
524	Measurement of the top-quark mass in $\mbox{mathrm}\{t\}$ overline{mathrm $\{t\}\}$ events with lepton+jets final states in pp collisions at $\mbox{sqrt}\{s\}=7$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	38
525	Measurement of the underlying event in the Drell–Yan process in proton–proton collisions at \$sqrt{s} = 7~mbox{TeV}\$. European Physical Journal C, 2012, 72, 1.	3.9	33
526	Study of the inclusive production of charged pions, kaons, and protons in pp collisions at $q=0.9, 2.76, mbox{and }7~mbox{TeV}$. European Physical Journal C, 2012, 72, 1.	3.9	154
527	A search for a doubly-charged Higgs boson in pp collisions at $q=7 \mod TeV$. European Physical Journal C, 2012, 72, 1.	3.9	129
528	Measurement of the top-quark mass in $mathrm{t}$ events with dilepton final states in pp collisions at $q=0$ mbox TeV . European Physical Journal C, 2012, 72, 1.	3.9	42
529	Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in protonâ \in "proton collisions at \$sqrt{s} = 7 mathrm{TeV}\$. European Physical Journal C, 2012, 72, 1.	3.9	26
530			

#	Article	IF	CITATIONS
541	Searches for new physics: Les Houches recommendations for the presentation of LHC results. European Physical Journal C, 2012, 72, 1.	3.9	32
542	Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at $sqrt{s_{NN}} = 2.76$ mbox{TeV}. European Physical Journal C, 2012, 72, 1.	3.9	181
543	Jet production rates in association with W and Z bosons in pp collisions at sqrt s = 7 extTeV} \$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	58
544	Exclusive $\hat{i}^3\hat{i}^3$ \hat{a}^{\dagger} , $\hat{i}^1/4 + \hat{i}^1/4$ \hat{a}^{-2} production in proton-proton collisions at \$ sqrt {s} = {7} \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	56
545	Measurement of the production cross section for pairs of isolated photons in pp collisions at $\$$ sqrt $\{s\} = 7$; TeV $\$$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	26
546	Exploring neutralino dark matter resonance annihilation via <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>b</mml:mi><mml:mi><mml:mo><mml:mi>b</mml:mi><mml .<="" 2011,="" 84,="" d,="" lhc.="" physical="" review="" td="" the=""><td>:mi⁴47<td>ml:mi><mml:r< td=""></mml:r<></td></td></mml></mml:mo></mml:mi></mml:math>	:mi ⁴ 47 <td>ml:mi><mml:r< td=""></mml:r<></td>	ml:mi> <mml:r< td=""></mml:r<>
547	Prompt and non-prompt J/ $\hat{\Gamma}$ production in pp collisions at \$sqrt{s} = 7\$ TeV. European Physical Journal C, 2011, 71, 1.	3.9	135
548	Z′ discovery potential at the LHC in the minimal B–L extension of the standard model. European Physical Journal C, 2011, 71, 1.	3.9	56
549	Boosted objects: a probe of beyond the standard model physics. European Physical Journal C, 2011, 71, 1.	3.9	249
550	Measurement of the $\frac{t}{t}}$ production cross section in pp collisions at $\frac{s}{t}$ TeV using the kinematic properties of events with leptons and jets. European Physical Journal C, 2011, 71, 1.	3.9	37
551	Charged particle multiplicities in pp interactions at	4.7	106
552	Measurements of inclusive W and Z cross sections in pp collisions at $\$$ sqrt $\$$ = 7 $\$$ TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	122
553	Search for heavy stable charged particles in pp collisions at sqrt = 7; ext TeV . Journal of High Energy Physics, 2011, 2011, 1.	4.7	38
554	Inclusive b-hadron production cross section with muons in pp collisions at $\$$ sqrt $\{s\}$ = 7; $\{ext\{TeV\}\}\}$ \$. Journal of High Energy Physics, 2011, 2011, 1.	4.7	23
555	Measurement of $\{\text{ext}\{B\}\}$ overline $\{\text{ext}\{B\}\}$ angular correlations based on secondary vertex reconstruction at $\{\text{s}\} = 7, \{\text{ext}\{\text{TeV}\}\}$ \$. Journal of High Energy Physics, 2011, 2011, 1.	4.7	32
556	Measurement of the lepton charge asymmetry in inclusive W production in pp collisions at $\$ $ sqrt $\$ $ = 7; $\{ ext\{TeV\} \} \$$. Journal of High Energy Physics, 2011, 2011, 1.	4.7	59
557	Measurement of Bose-Einstein correlations in pp collisions at $\$$ sqrt $\{s\}$ = 0.9 $\$$ and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	30
558	Strange particle production in pp collisions at sqrt s= 0.9 3 and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	139

#	Article	IF	CITATIONS
559	Search for large extra dimensions in the diphoton final state at the Large Hadron Collider. Journal of High Energy Physics, 2011, 2011, 1.	4.7	22
560	Search for resonances in the dilepton mass distribution in pp collisions at $\$$ sqrt $\{s\}$ = 7 $\$$ TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	39
561	Search for physics beyond the standard model in opposite-sign dilepton events in pp collisions at $\$ sqrt {s} = 7,{ext{TeV}} \$. Journal of High Energy Physics, 2011, 2011, 1.	4.7	26
562	Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC. Journal of High Energy Physics, 2011, 2011, 1.	4.7	46
563	Search for supersymmetry in events with a lepton, a photon, and large missing transverse energy in pp collisions at sqrt sqrt TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	10
564	Measurement of the $\{m t\}$ production cross section and the top quark mass in the dilepton channel in pp collisions at sqrt s = 7 TeV . Journal of High Energy Physics, 2011, 2011, 1.	4.7	53
565	Long-range and short-range dihadron angular correlations in central PbPb collisions at \$ sqrt {{{s_{ext{NN}}}}} \$  = 2.76 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	65
566	Search for supersymmetry in events with b jets and missing transverse momentum at the LHC. Journal of High Energy Physics, 2011, 2011, 1.	4.7	29
567	Search for same-sign top-quark pair production at $\$$ sqrt $\{s\} = 7 \$$ TeV and limits on flavour changing neutral currents in the top sector. Journal of High Energy Physics, 2011, 2011, 1.	4.7	40
568	Charged particle transverse momentum spectra in pp collisions at $\$$ sqrt $\$$ = 0.9 $\$$ and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	56
569	Measurement of the inclusive Z cross section via decays to tau pairs in pp collisions at sqrt s = 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	20
570	Dependence on pseudorapidity and on centrality of charged hadron production in PbPb collisions at \$ sqrt $\{\{s_{NN}\}\}\}$ = 2.76 \$ TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	99
571	Search for new physics with jets and missing transverse momentum in pp collisions at sqrt sqrt and TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	49
572	Search for supersymmetry in pp collisions at sqrt sqrt for in events with a single lepton, jets, and missing transverse momentum. Journal of High Energy Physics, 2011, 2011, 1.	4.7	32
573	Measurement of the underlying event activity at the LHC with $\$ sqrt $\{s\} = 7 \$ TeV and comparison with $\$ sqrt $\{s\} = 0.9 \$ TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	97
574	Measurement of the Drell-Yan cross section in pp collisions at $\$$ sqrt $\$$ = 7 $\$$ TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	36
575	Measurement of the inclusive W and Z production cross sections in pp collisions at $\$$ sqrt $\{s\}$ = 7 $\$$ TeV with the CMS experiment. Journal of High Energy Physics, 2011, 2011, 1.	4.7	158
576	Measurement of energy flow at large pseudorapidities in pp collisions at $\$$ sqrt $\{s\}$ = 0. $\{9\}$ $\$$ and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	25

#	Article	IF	CITATIONS
577	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>Z</mml:mi><mml:mo>â\in2</mml:mo></mml:msup></mml:math>physics with early LHC data. Physical Review D, 2011, 83, .</pre>	4.7	72
578	Mixed dark matter from technicolor. Physical Review D, 2011, 83, .	4.7	42
579	Measurement of energy flow at large pseudorapidities in pp collisions at (sqrt $\{s\}$ = 0. $\{9\}$) and 7 TeV. , 2011, 2011, 1.		5
580	Higgs phenomenology in the minimal <i>B</i> â€" <i>L</i> extension of the Standard Model at LHC. Journal of Physics: Conference Series, 2010, 259, 012062.	0.4	12
581	First measurement of the underlying event activity at \hat{A} the \hat{A} LHC \hat{A} with \hat{A} \$sqrt{s} = 0.9\$ \hat{A} TeV. European Physical Journal C, 2010, 70, 555-572.	3.9	50
582	CMS tracking performance results from early LHC operation. European Physical Journal C, 2010, 70, 1165-1192.	3.9	120
583	Higgs boson phenomenology in Ï"+Ï"â~ final states at the LHC. Journal of High Energy Physics, 2010, 2010, 1.	4.7	5
584	Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC. Journal of High Energy Physics, 2010, 2010, 1.	4.7	497
585	LHC discovery potential of the lightest NMSSM Higgs boson in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>h</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>â†'</mml:mo><th>>4mml:ms</th><th>sub> <mml:n< th=""></mml:n<></th></mml:math>	>4mml:ms	sub> <mml:n< th=""></mml:n<>
586	Discovering bottom squark coannihilation at the ILC. Physical Review D, 2010, 81, .	4.7	6
587	Tree-level unitarity bounds for the minimalBâ^'Lmodel. Physical Review D, 2010, 81, .	4.7	15
588	Very light Higgs bosons in extended models at the LHC. Physical Review D, 2010, 81, .	4.7	2
589	Phenomenology of the minimal <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi><mml:mo>â^²</mml:mo><mml:mi>L</mml:mi></mml:math> extension of the standard model: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>Z</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:math> and	4.7	162
590	Technicolor walks at the LHC. Physical Review D, 2009, 79, .	4.7	83
591	Probing the <i>Z</i> ′ sector of the minimal <i>B</i> â°' <i>L</i> model at future Linear Colliders in the <i>e</i> sup>+â°'â°'â†' Î⅓ ⁺ â°'process. Journal of High Energy Physics, 2009, 2009, 006-006.	4.7	34
592	Supersymmetry status and phenomenology at the Large Hadron Collider. Pramana - Journal of Physics, 2009, 72, 143-160.	1.8	2
593	Working group report: Dictionary of Large Hadron Collider signatures. Pramana - Journal of Physics, 2009, 72, 229-237.	1.8	6
594	Supersymmetric interpretation of the Egret GeV anomaly, Xenon-10 dark matter search limits, and the CERN LHC. Physical Review D, 2008, 77, .	4.7	2

#	Article	IF	CITATIONS
595	CERN LHC signals from warped extra dimensions. Physical Review D, 2008, 77, .	4.7	199
596	Light Minimal Supersymmetric Standard Model Higgs Boson Scenario and its Test at Hadron Colliders. Physical Review Letters, 2008, 100, 061801.	7.8	45
597	CERN LHC signatures of new gauge bosons in the minimal Higgsless model. Physical Review D, 2008, 78, .	4.7	65
598	Heavy quark mass effects in deep inelastic scattering and global QCD analysis. Journal of High Energy Physics, 2007, 2007, 053-053.	4.7	159
599	PHENOMENOLOGY OF LITTLEST HIGGS MODEL WITH T-PARITY: INCLUDING EFFECTS OF T-ODD FERMIONS. , 2007, , .		1
600	Physics interplay of the LHC and the ILC. Physics Reports, 2006, 426, 47-358.	25.6	297
601	Supersymmetry parameter analysis: SPA convention and project. European Physical Journal C, 2006, 46, 43-60.	3.9	218
602	Transverse momentum resummation for Higgs boson produced viabbar b fusion at hadron colliders. Journal of High Energy Physics, 2006, 2006, 004-004.	4.7	18
603	Uncertainties of the inclusive Higgs production cross section at the tevatron and the LHC. Journal of High Energy Physics, 2006, 2006, 069-069.	4.7	15
604	Parton distributions and the strong coupling: CTEQ6AB PDFs. Journal of High Energy Physics, 2006, 2006, 032-032.	4.7	150
605	Phenomenology of a littlest Higgs model with T parity: Including effects of T-odd fermions. Physical Review D, 2006, 74, .	4.7	103
606	HUNTING FOR SUPERSYMMETRY IN DARK MATTER ALLOWED REGIONS. International Journal of Modern Physics A, 2006, 21, 205-235.	1.5	3
607	Measurement of the top quark mass in all-jet events. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 606, 25-33. Helicity of the W boson in lepton+jets <mml:math <="" altimg="si1.gif" overflow="scroll" td=""><td>4.1</td><td>20</td></mml:math>	4.1	20
608	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	4.1	54
609	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevi. Physics Physics potential and experimental challenges of the LHC luminosity upgrade. European Physical Journal C, 2005, 39, 293-333.	3.9	300
610	Production of excited neutrinos at the LHC. European Physical Journal C, 2005, 41, 1-10.	3.9	228
611	The role of PDF uncertainty for inclusive Higgs boson production at the Tevatron and LHC. AIP Conference Proceedings, 2005, , .	0.4	0
612	Leptoquark single and pair production at LHC with CalcHEP/CompHEP in the complete model. Journal of High Energy Physics, 2005, 2005, 005-005.	4.7	64

#	Article	IF	CITATIONS
613	Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses. Journal of High Energy Physics, 2005, 2005, 065-065.	4.7	237
614	The meaning of "Higgsâ€Ñ"+Ï"â^'andγγat the Fermilab Tevatron and the CERN LHC. Physical Review D, 2005,	72,7.	11
615	Neutralino cold dark matter in a one-parameter extension of the minimal supergravity model. Physical Review D, 2005, 71, .	4.7	106
616	Signals from R-parity violating top quark decays at LHC. Journal of High Energy Physics, 2004, 2004, 012-012.	4.7	12
617	Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model. Journal of High Energy Physics, 2004, 2004, 007-007.	4.7	56
618	SUSY Normal Scalar Mass Hierarchy Reconciles (g-2),bÂs, and Relic Density. Journal of High Energy Physics, 2004, 2004, 044-044.	4.7	53
619	Reconciling Neutralino relic Density with Yukawa Unified Supersymmetric Models. Journal of High Energy Physics, 2004, 2004, 066-066.	4.7	26
620	Search for NarrowttÂ ⁻ Resonances inppÂ ⁻ Collisions ats=1.8   TeV. Physical Review Letters, 2004, 92, 22	1891.	22
621	Indirect, direct and collider detection of neutralino dark matter in the minimal supergravity model. Journal of Cosmology and Astroparticle Physics, 2004, 2004, 005-005.	5.4	24
622	A precision measurement of the mass of the top quark. Nature, 2004, 429, 638-642.	27.8	232
623	Production and decay of excited electrons atÂtheÂLHC. European Physical Journal C, 2004, 32, s1-s17.	3.9	14
624	Search for 3- and 4-body decays of the scalar top quark in ppl, collisions at s= 1.8 TeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 581, 147-155.	4.1	10
625	Observation of diffractively produced W and Z bosons in pl̂,,p collisions at s=1800ÂGeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 574, 169-179.	4.1	16
626	Supersymmetric effects on heavy charged Higgs boson production in hadron colliders. Nuclear Physics, Section B, Proceedings Supplements, 2003, 116, 296-300.	0.4	2
627	Search for Large Extra Dimensions in the Monojet+El , TChannel with the DÃ Detector. Physical Review Letters, 2003, 90, 251802.	7.8	54
628	ttÂ ⁻ production cross section inppÂ ⁻ collisions ats=1.8TeV. Physical Review D, 2003, 67, .	4.7	33
629	Multiple jet production at low transverse energies inpp \hat{A} -collisions ats=1.8TeV. Physical Review D, 2003, 67, .	4.7	12
630	Direct detection of dark matter in supersymmetric models. Journal of Cosmology and Astroparticle Physics, 2003, 2003, 007-007.	5.4	72

#	Article	IF	Citations
631	Yukawa coupling unification in supersymmetric models. Journal of High Energy Physics, 2003, 2003, 023-023.	4.7	75
632	FCNC top quark production via anomaloustqVcouplings beyond leading order. Journal of High Energy Physics, 2003, 2003, 004-004.	4.7	30
633	Updated reach of CERN LHC and constraints from relic density,b→sγ andaÎ⅓in the mSUGRA model. Journal of High Energy Physics, 2003, 2003, 054-054.	4.7	155
634	ggâ†'hâ†' Ï"+Ï"-at the upgraded Fermilab Tevatron. Journal of High Energy Physics, 2003, 2003, 021-021.	4.7	12
635	Search forR-Parity Violating Supersymmetry in Two-Muon and Four-Jet Topologies. Physical Review Letters, 2002, 89, 171801.	7.8	6
636	Search for the Production of Single Sleptons through R-Parity Violation inppÂ⁻Collisions ats=1.8  TeV. Physical Review Letters, 2002, 89, 261801.	7.8	8
637	Direct Search for Charged Higgs Bosons in Decays of Top Quarks. Physical Review Letters, 2002, 88, 151803.	7.8	40
638	Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models. Physical Review D, 2002, 65, .	4.7	17
639	Prospects for supersymmetric charged Higgs boson discovery at the Fermilab Tevatron and the CERN Large Hadron Collider. Physical Review D, 2002, 65, .	4.7	33
640	Search for the Scalar Top Quark inppÂ ⁻ Collisions ats=1.8TeV. Physical Review Letters, 2002, 88, 171802.	7.8	17
641	Search for Leptoquark Pairs Decaying into $\hat{1}/2\hat{1}/2$ +jetsinpp \hat{A} -Collisions ats=1.8TeV. Physical Review Letters, 2002, 88, 191801.	7.8	11
642	QCD corrections to flavor-changing-neutral-current single top production at the DESY HERA collider. Physical Review D, 2002, 65, .	4.7	29
643	Updated Constraints on the Minimal Supergravity Model. Journal of High Energy Physics, 2002, 2002, 050-050.	4.7	124
644	Prospects for heavy supersymmetric charged Higgs boson searches at hadron colliders. Journal of High Energy Physics, 2002, 2002, 059-059.	4.7	51
645	pp→tbar tH,H→Ï,,+Ï,,â^': toward a model independent determination of the Higgs boson couplings at the LHC. Journal of High Energy Physics, 2002, 2002, 041-041.	4.7	82
646	Viable models with non-universal gaugino mediated supersymmetry breaking. Journal of High Energy Physics, 2002, 2002, 061-061.	4.7	34
647	Neutralino relic density in minimal supergravity with co-annihilations. Journal of High Energy Physics, 2002, 2002, 042-042.	4.7	164
648	Charged-lepton-flavour violation in kaon decays in supersymmetric theories. European Physical Journal C, 2002, 22, 715-726.	3.9	9

#	Article	IF	CITATIONS
649	The inclusive jet cross section in pp collisions at s=1.8ÂTeV using the k⊥ algorithm. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 525, 211-218.	4.1	34
650	Differential cross section for w boson production as a function of transverse momentum in collisions at TeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 513, 292-300.	4.1	28
651	Search for single top quark production at $D\tilde{A}^{\sim}$ using neural networks. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 517, 282-294.	4.1	59
652	Quasi-Model-Independent Search for New HighpTPhysics at DO. Physical Review Letters, 2001, 86, 3712-3717.	7.8	39
653	Ratio of Isolated Photon Cross Sections in pp \hat{A}^- Collisions at \hat{a} *s=630 and 1800 GeV. Physical Review Letters, 2001, 87, 251805.	7.8	48
654	Search for New Physics Using QUAERO: A General Interface to DO Event Data. Physical Review Letters, 2001, 87, 231801.	7.8	12
655	Search for Heavy Particles Decaying into Electron-Positron Pairs inppÂ ⁻ Collisions. Physical Review Letters, 2001, 87, 061802.	7.8	29
656	Ratio of Jet Cross Sections ats=630GeV and 1800 GeV. Physical Review Letters, 2001, 86, 2523-2528.	7.8	13
657	Inclusive Jet Production inppÂ ⁻ Collisions. Physical Review Letters, 2001, 86, 1707-1712.	7.8	77
658	Ratios of Multijet Cross Sections inppÂ ⁻ Collisions atâ [*] ss=1.8TeV. Physical Review Letters, 2001, 86, 1955-1960.	7.8	13
659	Search for first-generation scalar and vector leptoquarks. Physical Review D, 2001, 64, .	4.7	14
660	Search for Large Extra Dimensions in Dielectron and Diphoton Production. Physical Review Letters, 2001, 86, 1156-1161.	7.8	70
661	Single top quarktW+Xproduction at the CERN LHC: A closer look. Physical Review D, 2001, 63, .	4.7	41
662	High-pTjets inpÂ⁻pcollisions ats=630and 1800 GeV. Physical Review D, 2001, 64, .	4.7	67
663	Three-body supersymmetric top decays. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 484, 79-86.	4.1	5
664	The production cross section and angular correlations in collisions at. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 487, 264-272.	4.1	110
665	Search for electroweak production of single top quarks inpp \hat{A} collisions. Physical Review D, 2000, 63, .	4.7	37
666	Measurement of the inclusive differential cross section for Zbosons as a function of transverse momentum inp \hat{A} -pcollisions ats=1.8TeV. Physical Review D, 2000, 61, .	4.7	53

#	Article	IF	Citations
667	Differential Production Cross Section of ZBosons as a Function of Transverse Momentum ats=1.8TeVTeV. Physical Review Letters, 2000, 84, 2792-2797.	7.8	40
668	Extraction of the width of the Wboson from measurements of $\hat{I}_f(pp\hat{A}^-\hat{a}^\dagger)W+X)\tilde{A}-B(W\hat{a}^\dagger)^2$ and $\hat{I}_f(pp\hat{A}^-\hat{a}^\dagger)^2Z+X$, their ratio. Physical Review D, 2000, 61, .	×B(Z→o 4.7	ге)and
669	Search for Second-Generation Leptoquark Pairs inpÂ ⁻ pCollisions atâ ⁻ šs=1.8TeV. Physical Review Letters, 2000, 84, 2088-2093.	7.8	30
670	Measurement of theWâ†'ï"νProduction Cross Section inppÂ-Collisions ats=1.8TeV. Physical Review Letters, 2000, 84, 5710-5715.	7.8	23
671	Isolated Photon Cross Section inppÂ ⁻ Collisions atâ [*] ss=1.8TeV. Physical Review Letters, 2000, 84, 2786-2791.	7.8	7 5
672	Search for new physics ine \hat{l}^4 Xdata at D \tilde{A}° using SLEUTH: A quasi-model-independent search strategy for new physics. Physical Review D, 2000, 62, .	4.7	43
673	Spin Correlation inttÂ ⁻ Production fromppÂ ⁻ Collisions atâ [*] ss=1.8TeV. Physical Review Letters, 2000, 85, 256-261.	7.8	38
674	Probing Balitsky-Fadin-Kuraev-Lipatov Dynamics in the Dijet Cross Section at Large Rapidity Intervals inppÂ ⁻ Collisions atâ [*] ss=1800and 630 GeV. Physical Review Letters, 2000, 84, 5722-5727.	7.8	32
675	CONSTRAINTS ON ELECTROWEAK CONTACT INTERACTIONS FROM LEP AND TEVATRON DATA. Modern Physics Letters A, 1999, 14, 397-405.	1.2	3
676	Measurement of the top quark pair production cross section inpp \hat{A} -collisions using multijet final states. Physical Review D, 1999, 60, .	4.7	30
677	Search forR-Parity Violating Supersymmetry in the Dielectron Channel. Physical Review Letters, 1999, 83, 4476-4481.	7.8	25
678	Search for Second Generation Leptoquark Pairs Decaying $toled{1}/4l^{1/2}$ +jetsinpp A^- Collisions ata^šs=1.8TeV. Physical Review Letters, 1999, 83, 2896-2901.	7.8	15
679	Search for Squarks and Gluinos in Events Containing Jets and a Large Imbalance in Transverse Energy. Physical Review Letters, 1999, 83, 4937-4942.	7.8	55
680	Measurement of the High-Mass Drell-Yan Cross Section and Limits on Quark-Electron Compositeness Scales. Physical Review Letters, 1999, 82, 4769-4774.	7.8	57
681	Signal and backgrounds for leptoquarks at the CERN LHC. II. Vector leptoquarks. Physical Review D, 1999, 59, .	4.7	4
682	Measurement of the top quark mass in the dilepton channel. Physical Review D, 1999, 60, .	4.7	80
683	Search for Charged Higgs Bosons in Decays of Top Quark Pairs. Physical Review Letters, 1999, 82, 4975-4980.	7.8	82
684	Supersymmetric Higgs boson pair production at hadron colliders. Physical Review D, 1999, 60, .	4.7	35

#	Article	IF	CITATIONS
685	Inclusive Jet Cross Section inpÂ ⁻ pCollisions atâ ⁻ šs=1.8TeV. Physical Review Letters, 1999, 82, 2451-2456.	7.8	62
686	Dijet Mass Spectrum and a Search for Quark Compositeness inpÂ-pCollisions atâ-ss=1.8TeV. Physical Review Letters, 1999, 82, 2457-2462.	7.8	61
687	Tevatron potential for technicolor search with prompt photons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 462, 150-157.	4.1	6
688	Determination of the absolute jet energy scale in the $D\tilde{A}^{\sim}$ calorimeters. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 424, 352-394.	1.6	53
689	Search for top squark pair production in the dielectron channel. Physical Review D, 1998, 57, 589-593.	4.7	13
690	Measurement of Dijet Angular Distributions and Search for Quark Compositeness. Physical Review Letters, 1998, 80, 666-671.	7.8	39
691	Measurement of the Top Quark Mass Using Dilepton Events. Physical Review Letters, 1998, 80, 2063-2068.	7.8	110
692	Direct measurement of the top quark mass by the D \tilde{A} Collaboration. Physical Review D, 1998, 58, .	4.7	107
693	Search for First Generation Scalar Leptoquark Pairs inppÂ ⁻ Collisions ats=1.8TeV. Physical Review Letters, 1998, 80, 2051-2056.	7.8	46
694	Study of theZZγandZγγCouplings inZ(νν)γProduction. Physical Review Letters, 1997, 78, 3640-3645.	7.8	36
695	Search for Scalar Leptoquark Pairs Decaying to Electrons and Jets inpÂ ⁻ pCollisions. Physical Review Letters, 1997, 79, 4321-4326.	7.8	47
696	Measurement of the Top Quark Pair Production Cross Section inpp \hat{A}^{-} Collisions. Physical Review Letters, 1997, 79, 1203-1208.	7.8	70
697	Limits on AnomalousWWγCouplings frompp¯→Wγ+XEvents at√s=1.8TeV. Physical Review Letters, 1997, 78, 3634-3639.	7.8	48
698	Color coherent radiation in multijet events from collisions at. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 414, 419-427.	4.1	18
699	Search for additional neutral gauge bosons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 385, 471-478.	4.1	26
700	LIGHT AND INTERMEDIATE HIGGS BOSON SEARCH AT TEVATRON ENERGIES. Modern Physics Letters A, 1995, 10, 25-38.	1.2	15