Matthew Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/322530/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Vulnerable Waters are Essential to Watershed Resilience. Ecosystems, 2023, 26, 1-28.	3.4	21
2	Metabolic regime shifts and ecosystem state changes are decoupled in a large river. Limnology and Oceanography, 2022, 67, .	3.1	13
3	<i>Inâ€Situ</i> Quantification and Prediction of Water Yield From Southern US Pine Forests. Water Resources Research, 2022, 58, .	4.2	4
4	Estimating Benthic Light Regimes Improves Predictions of Primary Production and constrains Light-Use Efficiency in Streams and Rivers. Ecosystems, 2021, 24, 825-839.	3.4	18
5	A little relief: Ecological functions and autogenesis of wetland microtopography. Wiley Interdisciplinary Reviews: Water, 2021, 8, .	6.5	14
6	Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nature Geoscience, 2021, 14, 289-294.	12.9	76
7	River network travel time is correlated with dissolved organic matter composition in rivers of the contiguous United States. Hydrological Processes, 2021, 35, e14124.	2.6	11
8	A seasonally dynamic model of light at the stream surface. Freshwater Science, 2021, 40, 286-301.	1.8	14
9	Stream network variation in dissolved oxygen: Metabolism proxies and biogeochemical controls. Ecological Indicators, 2021, 131, 108233.	6.3	9
10	Controls on productivity of submerged aquatic vegetation in 2 spring-fed rivers. Freshwater Science, 2020, 39, 1-17.	1.8	3
11	Evaluating spatiotemporal variation in water chemistry of the upper Colorado River using longitudinal profiling. Hydrological Processes, 2020, 34, 1782-1793.	2.6	8
12	Local Storage Dynamics of Individual Wetlands Predict Wetlandscape Discharge. Water Resources Research, 2020, 56, e2020WR027581.	4.2	9
13	Nutrient Uptake in the Supraglacial Stream Network of an Antarctic Glacier. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005679.	3.0	8
14	A proposed method for estimating interception from near-surface soil moisture response. Hydrology and Earth System Sciences, 2020, 24, 1859-1870.	4.9	6
15	Remote detection of ecosystem degradation in the Everglades ridge-slough landscape. Remote Sensing of Environment, 2020, 247, 111917.	11.0	5
16	Fertilization has negligible effects on nutrient export and stream biota in two North Florida forested watersheds. Forest Ecology and Management, 2020, 465, 118096.	3.2	6
17	Nitrate depletion dynamics and primary production in riverine benthic chambers. Freshwater Science, 2020, 39, 169-182.	1.8	5
18	Pathways for Methane Emissions and Oxidation that Influence the Net Carbon Balance of a Subtropical Cypress Swamp. Frontiers in Earth Science, 2020, 8, .	1.8	9

#	Article	IF	CITATIONS
19	Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape. Chemical Geology, 2019, 527, 118774.	3.3	20
20	Mass balance implies Holocene development of a low-relief karst patterned landscape. Chemical Geology, 2019, 527, 118782.	3.3	13
21	Wetland Connectivity Thresholds and Flow Dynamics From Stage Measurements. Water Resources Research, 2019, 55, 6018-6032.	4.2	19
22	Scaleâ€Dependent Patterning of Wetland Depressions in a Lowâ€Relief Karst Landscape. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2101-2117.	2.8	11
23	Initiation and Development of Wetlands in Southern Florida Karst Landscape Associated With Accumulation of Organic Matter and Vegetation Evolution. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1604-1617.	3.0	12
24	Flow Extremes as Spatiotemporal Control Points on River Solute Fluxes and Metabolism. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 537-555.	3.0	19
25	Spatially distributed denitrification in a karst springshed. Hydrological Processes, 2019, 33, 1191-1203.	2.6	5
26	Complex patterns of catchment solute–discharge relationships for coastal plain rivers. Hydrological Processes, 2018, 32, 388-401.	2.6	46
27	Isolating stream metabolism and nitrate processing at point-scales, and controls on heterogeneity. Freshwater Science, 2018, 37, 238-250.	1.8	5
28	The metabolic regimes of flowing waters. Limnology and Oceanography, 2018, 63, S99.	3.1	247
29	Channel Filtering Generates Multifractal Solute Signals. Geophysical Research Letters, 2018, 45, 11,722.	4.0	14
30	Solute evidence for hydrological connectivity of geographically isolated wetlands. Land Degradation and Development, 2018, 29, 3954-3962.	3.9	26
31	Flow reversals as a driver of ecosystem transition in Florida's springs. Freshwater Science, 2017, 36, 14-25.	1.8	13
32	Stream phosphorus dynamics of minimally impacted coastal plain watersheds. Hydrological Processes, 2017, 31, 1636-1649.	2.6	8
33	Spatial metrics for detecting ecosystem degradation in the ridge-slough patterned landscape. Ecological Indicators, 2017, 74, 427-440.	6.3	3
34	Enhancing protection for vulnerable waters. Nature Geoscience, 2017, 10, 809-815.	12.9	141
35	Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 2017, 108, 489-497.	3.6	217
36	Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns. Water Resources Research, 2017, 53, 5742-5755.	4.2	7

#	Article	IF	CITATIONS
37	Managing Florida's Plantation Forests in a Changing Climate. , 2017, , .		1
38	Hydrologic controls on aperiodic spatial organization of the ridge–slough patterned landscape. Hydrology and Earth System Sciences, 2016, 20, 4457-4467.	4.9	14
39	Sensors in the Stream: The High-Frequency Wave of the Present. Environmental Science & Technology, 2016, 50, 10297-10307.	10.0	239
40	Spectral prediction of sediment chemistry in Lake Okeechobee, Florida. Environmental Monitoring and Assessment, 2016, 188, 594.	2.7	1
41	On the emergence of diel solute signals in flowing waters. Water Resources Research, 2016, 52, 759-772.	4.2	39
42	Do geographically isolated wetlands influence landscape functions?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1978-1986.	7.1	297
43	Hydraulic effects on nitrogen removal in a tidal springâ€fed river. Water Resources Research, 2015, 51, 1443-1456.	4.2	21
44	Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland. Hydrology and Earth System Sciences, 2015, 19, 2133-2144.	4.9	15
45	Diffusion and seepage-driven element fluxes from the hyporheic zone of a karst river. Freshwater Science, 2015, 34, 206-221.	1.8	17
46	Linking metrics of landscape pattern to hydrological process in a lotic wetland. Landscape Ecology, 2015, 30, 1893-1912.	4.2	38
47	Geographically Isolated Wetlands are Important Biogeochemical Reactors on the Landscape. BioScience, 2015, 65, 408-418.	4.9	163
48	Geographically Isolated Wetlands: Rethinking a Misnomer. Wetlands, 2015, 35, 423-431.	1.5	87
49	Homeostasis and nutrient limitation of benthic autotrophs in natural chemostats. Limnology and Oceanography, 2014, 59, 2101-2111.	3.1	14
50	Nutrient flux, uptake, and autotrophic limitation in streams and rivers. Freshwater Science, 2014, 33, 85-98.	1.8	33
51	Evidence of biogeomorphic patterning in a lowâ€relief karst landscape. Earth Surface Processes and Landforms, 2014, 39, 2027-2037.	2.5	22
52	Environmentallyâ€mediated consumer control of algal proliferation in Florida springs. Freshwater Biology, 2014, 59, 2009-2023.	2.4	13
53	A significant nexus: Geographically isolated wetlands influence landscape hydrology. Water Resources Research, 2014, 50, 7153-7166.	4.2	104
54	Ecosystem specific yield for estimating evapotranspiration and groundwater exchange from diel surface water variation. Hydrological Processes, 2014, 28, 1495-1506.	2.6	40

#	Article	IF	CITATIONS
55	Inferring nitrogen removal in large rivers from highâ€resolution longitudinal profiling. Limnology and Oceanography, 2014, 59, 1152-1170.	3.1	45
56	Temporal stability of vegetation indicators of wetland condition. Ecological Indicators, 2013, 34, 69-75.	6.3	12
5 7	Managing Forests for Increased Regional Water Yield in the Southeastern U.S. Coastal Plain. Journal of the American Water Resources Association, 2013, 49, 953-965.	2.4	62
58	Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large springâ€fed river. Ecological Monographs, 2013, 83, 155-176.	5.4	84
59	Controls on diel metal cycles in a biologically productive carbonate-dominated river. Chemical Geology, 2013, 358, 61-74.	3.3	29
60	Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition. Ecological Applications, 2013, 23, 1619-1631.	3.8	105
61	Discharge Competence and Pattern Formation in Peatlands: A Meta-Ecosystem Model of the Everglades Ridge-Slough Landscape. PLoS ONE, 2013, 8, e64174.	2.5	24
62	Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes. Journal of Geophysical Research, 2012, 117, .	3.3	41
63	Orientation matters: Patch anisotropy controls discharge competence and hydroperiod in a patterned peatland. Geophysical Research Letters, 2012, 39, .	4.0	27
64	Do ecosystem services influence household wealth in rural Mali?. Ecological Economics, 2012, 82, 33-44.	5.7	12
65	Controls on solute transport in large spring-fed karst rivers. Limnology and Oceanography, 2012, 57, 912-924.	3.1	20
66	Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer. Biogeosciences, 2012, 9, 1671-1690.	3.3	51
67	The Ecohydrology of a pioneer wetland species and a drastically altered landscape. Ecohydrology, 2012, 5, 656-667.	2.4	8
68	Thermal artifacts in measurements of fineâ€scale water level variation. Water Resources Research, 2011, 47, .	4.2	37
69	Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river. Chemical Geology, 2011, 283, 31-31.	3.3	86
70	Reciprocal Biotic Control on Hydrology, Nutrient Gradients, and Landform in the Greater Everglades. Critical Reviews in Environmental Science and Technology, 2011, 41, 395-429.	12.8	33
71	Landscape Patterns of Significant Soil Nutrients and Contaminants in the Greater Everglades Ecosystem: Past, Present, and Future. Critical Reviews in Environmental Science and Technology, 2011, 41, 121-148.	12.8	23
72	Hydrologic and biotic influences on nitrate removal in a subtropical springâ€fed river. Limnology and Oceanography, 2010, 55, 249-263.	3.1	47

#	Article	IF	CITATIONS
73	Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical springâ€fed river. Limnology and Oceanography, 2010, 55, 677-688.	3.1	83
74	Hydrologic Modification and the Loss of Self-organized Patterning in the Ridge–Slough Mosaic of the Everglades. Ecosystems, 2010, 13, 813-827.	3.4	65
75	Algal blooms and the nitrogenâ€enrichment hypothesis in Florida springs: evidence, alternatives, and adaptive management. Ecological Applications, 2010, 20, 816-829.	3.8	61
76	Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river. Limnology and Oceanography, 2010, 55, 677-688.	3.1	75
77	Soil Total Mercury Concentrations across the Greater Everglades. Soil Science Society of America Journal, 2009, 73, 675-685.	2.2	20
78	Predicting national sustainability: The convergence of energetic, economic and environmental realities. Ecological Modelling, 2009, 220, 3424-3438.	2.5	61
79	Regional water resource implications of bioethanol production in the Southeastern United States. Global Change Biology, 2009, 15, 2261-2273.	9.5	46
80	Visible/Near Infrared Reflectance (VNIR) Spectroscopy for Detecting Twospotted Spider Mite (Acari:) Tj ETQq0 0 (DrgBT /Ον ₽.4	erlock 10 Tf 14
81	Spatial variability of soil properties in cypress domes surrounded by different land uses. Wetlands, 2008, 28, 411-422.	1.5	32
82	REFLECTANCE SPECTROSCOPY FOR ROUTINE AGRONOMIC SOIL ANALYSES. Soil Science, 2007, 172, 469-485.	0.9	43
83	On the potential for high-resolution lidar to improve rainfall interception estimates in forest ecosystems. Frontiers in Ecology and the Environment, 2007, 5, 421-428.	4.0	31
84	A model examining hierarchical wetland networks for watershed stormwater management. Ecological Modelling, 2007, 201, 179-193.	2.5	47
85	P-sorption capacity estimation in southeastern USA wetland soils using visible/near infrared (VNIR) reflectance spectroscopy. Wetlands, 2007, 27, 1098-1111.	1.5	10
86	Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis. Agriculture, Ecosystems and Environment, 2006, 114, 249-269.	5.3	129
87	Evaluating Ecological Condition Using Soil Biogeochemical Parameters and Near Infrared Reflectance Spectra. Environmental Monitoring and Assessment, 2006, 116, 427-457.	2.7	13
88	Species diversity in the Florida Everglades, USA: A systems approach to calculating biodiversity. Aquatic Sciences, 2006, 68, 254-277.	1.5	74
89	Visible-Near Infrared Reflectance Spectroscopy for Rapid, Nondestructive Assessment of Wetland Soil Quality. Journal of Environmental Quality, 2005, 34, 1422-1434.	2.0	100

90Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical
watershed. Geoderma, 2005, 124, 235-252.5.1109

#	Article	IF	CITATIONS
91	Vegetation based classification trees for rapid assessment of isolated wetland condition. Ecological Indicators, 2005, 5, 189-206.	6.3	25
92	FLORISTIC QUALITY INDICES FOR BIOTIC ASSESSMENT OF DEPRESSIONAL MARSH CONDITION IN FLORIDA. , 2004, 14, 784-794.		104