Matthew Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/322530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do geographically isolated wetlands influence landscape functions?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1978-1986.	7.1	297
2	The metabolic regimes of flowing waters. Limnology and Oceanography, 2018, 63, S99.	3.1	247
3	Sensors in the Stream: The High-Frequency Wave of the Present. Environmental Science & Technology, 2016, 50, 10297-10307.	10.0	239
4	Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 2017, 108, 489-497.	3.6	217
5	Geographically Isolated Wetlands are Important Biogeochemical Reactors on the Landscape. BioScience, 2015, 65, 408-418.	4.9	163
6	Enhancing protection for vulnerable waters. Nature Geoscience, 2017, 10, 809-815.	12.9	141
7	Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis. Agriculture, Ecosystems and Environment, 2006, 114, 249-269.	5.3	129
8	Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma, 2005, 124, 235-252.	5.1	109
9	Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition. Ecological Applications, 2013, 23, 1619-1631.	3.8	105
10	FLORISTIC QUALITY INDICES FOR BIOTIC ASSESSMENT OF DEPRESSIONAL MARSH CONDITION IN FLORIDA. , 2004, 14, 784-794.		104
11	A significant nexus: Geographically isolated wetlands influence landscape hydrology. Water Resources Research, 2014, 50, 7153-7166.	4.2	104
12	Visible-Near Infrared Reflectance Spectroscopy for Rapid, Nondestructive Assessment of Wetland Soil Quality. Journal of Environmental Quality, 2005, 34, 1422-1434.	2.0	100
13	Geographically Isolated Wetlands: Rethinking a Misnomer. Wetlands, 2015, 35, 423-431.	1.5	87
14	Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river. Chemical Geology, 2011, 283, 31-31.	3.3	86
15	Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large springâ€fed river. Ecological Monographs, 2013, 83, 155-176.	5.4	84
16	Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical springâ€fed river. Limnology and Oceanography, 2010, 55, 677-688.	3.1	83
17	Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nature Geoscience, 2021, 14, 289-294.	12.9	76
18	Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river. Limnology and Oceanography, 2010, 55, 677-688.	3.1	75

#	Article	IF	CITATIONS
19	Species diversity in the Florida Everglades, USA: A systems approach to calculating biodiversity. Aquatic Sciences, 2006, 68, 254-277.	1.5	74
20	Hydrologic Modification and the Loss of Self-organized Patterning in the Ridge–Slough Mosaic of the Everglades. Ecosystems, 2010, 13, 813-827.	3.4	65
21	Managing Forests for Increased Regional Water Yield in the Southeastern U.S. Coastal Plain. Journal of the American Water Resources Association, 2013, 49, 953-965.	2.4	62
22	Predicting national sustainability: The convergence of energetic, economic and environmental realities. Ecological Modelling, 2009, 220, 3424-3438.	2.5	61
23	Algal blooms and the nitrogenâ€enrichment hypothesis in Florida springs: evidence, alternatives, and adaptive management. Ecological Applications, 2010, 20, 816-829.	3.8	61
24	Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer. Biogeosciences, 2012, 9, 1671-1690.	3.3	51
25	A model examining hierarchical wetland networks for watershed stormwater management. Ecological Modelling, 2007, 201, 179-193.	2.5	47
26	Hydrologic and biotic influences on nitrate removal in a subtropical springâ€fed river. Limnology and Oceanography, 2010, 55, 249-263.	3.1	47
27	Regional water resource implications of bioethanol production in the Southeastern United States. Global Change Biology, 2009, 15, 2261-2273.	9.5	46
28	Complex patterns of catchment solute–discharge relationships for coastal plain rivers. Hydrological Processes, 2018, 32, 388-401.	2.6	46
29	Inferring nitrogen removal in large rivers from highâ€resolution longitudinal profiling. Limnology and Oceanography, 2014, 59, 1152-1170.	3.1	45
30	REFLECTANCE SPECTROSCOPY FOR ROUTINE AGRONOMIC SOIL ANALYSES. Soil Science, 2007, 172, 469-485.	0.9	43
31	Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes. Journal of Geophysical Research, 2012, 117, .	3.3	41
32	Ecosystem specific yield for estimating evapotranspiration and groundwater exchange from diel surface water variation. Hydrological Processes, 2014, 28, 1495-1506.	2.6	40
33	On the emergence of diel solute signals in flowing waters. Water Resources Research, 2016, 52, 759-772.	4.2	39
34	Linking metrics of landscape pattern to hydrological process in a lotic wetland. Landscape Ecology, 2015, 30, 1893-1912.	4.2	38
35	Thermal artifacts in measurements of fineâ€scale water level variation. Water Resources Research, 2011, 47, .	4.2	37
36	Reciprocal Biotic Control on Hydrology, Nutrient Gradients, and Landform in the Greater Everglades. Critical Reviews in Environmental Science and Technology, 2011, 41, 395-429.	12.8	33

#	Article	IF	CITATIONS
37	Nutrient flux, uptake, and autotrophic limitation in streams and rivers. Freshwater Science, 2014, 33, 85-98.	1.8	33
38	Spatial variability of soil properties in cypress domes surrounded by different land uses. Wetlands, 2008, 28, 411-422.	1.5	32
39	On the potential for high-resolution lidar to improve rainfall interception estimates in forest ecosystems. Frontiers in Ecology and the Environment, 2007, 5, 421-428.	4.0	31
40	Controls on diel metal cycles in a biologically productive carbonate-dominated river. Chemical Geology, 2013, 358, 61-74.	3.3	29
41	Orientation matters: Patch anisotropy controls discharge competence and hydroperiod in a patterned peatland. Geophysical Research Letters, 2012, 39, .	4.0	27
42	Solute evidence for hydrological connectivity of geographically isolated wetlands. Land Degradation and Development, 2018, 29, 3954-3962.	3.9	26
43	Vegetation based classification trees for rapid assessment of isolated wetland condition. Ecological Indicators, 2005, 5, 189-206.	6.3	25
44	Discharge Competence and Pattern Formation in Peatlands: A Meta-Ecosystem Model of the Everglades Ridge-Slough Landscape. PLoS ONE, 2013, 8, e64174.	2.5	24
45	Landscape Patterns of Significant Soil Nutrients and Contaminants in the Greater Everglades Ecosystem: Past, Present, and Future. Critical Reviews in Environmental Science and Technology, 2011, 41, 121-148.	12.8	23
46	Evidence of biogeomorphic patterning in a lowâ€relief karst landscape. Earth Surface Processes and Landforms, 2014, 39, 2027-2037.	2.5	22
47	Hydraulic effects on nitrogen removal in a tidal springâ€fed river. Water Resources Research, 2015, 51, 1443-1456.	4.2	21
48	Vulnerable Waters are Essential to Watershed Resilience. Ecosystems, 2023, 26, 1-28.	3.4	21
49	Soil Total Mercury Concentrations across the Greater Everglades. Soil Science Society of America Journal, 2009, 73, 675-685.	2.2	20
50	Controls on solute transport in large spring-fed karst rivers. Limnology and Oceanography, 2012, 57, 912-924.	3.1	20
51	Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape. Chemical Geology, 2019, 527, 118774.	3.3	20
52	Wetland Connectivity Thresholds and Flow Dynamics From Stage Measurements. Water Resources Research, 2019, 55, 6018-6032.	4.2	19
53	Flow Extremes as Spatiotemporal Control Points on River Solute Fluxes and Metabolism. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 537-555.	3.0	19
54	Estimating Benthic Light Regimes Improves Predictions of Primary Production and constrains Light-Use Efficiency in Streams and Rivers. Ecosystems, 2021, 24, 825-839.	3.4	18

#	Article	IF	CITATIONS
55	Diffusion and seepage-driven element fluxes from the hyporheic zone of a karst river. Freshwater Science, 2015, 34, 206-221.	1.8	17
56	Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland. Hydrology and Earth System Sciences, 2015, 19, 2133-2144.	4.9	15
57	Visible/Near Infrared Reflectance (VNIR) Spectroscopy for Detecting Twospotted Spider Mite (Acari:) Tj ETQq1 1	0.784314 1.4	rgBT /Overio
58	Homeostasis and nutrient limitation of benthic autotrophs in natural chemostats. Limnology and Oceanography, 2014, 59, 2101-2111.	3.1	14
59	Hydrologic controls on aperiodic spatial organization of the ridge–slough patterned landscape. Hydrology and Earth System Sciences, 2016, 20, 4457-4467.	4.9	14
60	Channel Filtering Generates Multifractal Solute Signals. Geophysical Research Letters, 2018, 45, 11,722.	4.0	14
61	A little relief: Ecological functions and autogenesis of wetland microtopography. Wiley Interdisciplinary Reviews: Water, 2021, 8, .	6.5	14
62	A seasonally dynamic model of light at the stream surface. Freshwater Science, 2021, 40, 286-301.	1.8	14
63	Evaluating Ecological Condition Using Soil Biogeochemical Parameters and Near Infrared Reflectance Spectra. Environmental Monitoring and Assessment, 2006, 116, 427-457.	2.7	13
64	Environmentallyâ€mediated consumer control of algal proliferation in Florida springs. Freshwater Biology, 2014, 59, 2009-2023.	2.4	13
65	Flow reversals as a driver of ecosystem transition in Florida's springs. Freshwater Science, 2017, 36, 14-25.	1.8	13
66	Mass balance implies Holocene development of a low-relief karst patterned landscape. Chemical Geology, 2019, 527, 118782.	3.3	13
67	Metabolic regime shifts and ecosystem state changes are decoupled in a large river. Limnology and Oceanography, 2022, 67, .	3.1	13
68	Do ecosystem services influence household wealth in rural Mali?. Ecological Economics, 2012, 82, 33-44.	5.7	12
69	Temporal stability of vegetation indicators of wetland condition. Ecological Indicators, 2013, 34, 69-75.	6.3	12
70	Initiation and Development of Wetlands in Southern Florida Karst Landscape Associated With Accumulation of Organic Matter and Vegetation Evolution. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1604-1617.	3.0	12
71	Scaleâ€Dependent Patterning of Wetland Depressions in a Lowâ€Relief Karst Landscape. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2101-2117.	2.8	11
72	River network travel time is correlated with dissolved organic matter composition in rivers of the contiguous United States. Hydrological Processes, 2021, 35, e14124.	2.6	11

#	Article	IF	CITATIONS
73	P-sorption capacity estimation in southeastern USA wetland soils using visible/near infrared (VNIR) reflectance spectroscopy. Wetlands, 2007, 27, 1098-1111.	1.5	10
74	Local Storage Dynamics of Individual Wetlands Predict Wetlandscape Discharge. Water Resources Research, 2020, 56, e2020WR027581.	4.2	9
75	Stream network variation in dissolved oxygen: Metabolism proxies and biogeochemical controls. Ecological Indicators, 2021, 131, 108233.	6.3	9
76	Pathways for Methane Emissions and Oxidation that Influence the Net Carbon Balance of a Subtropical Cypress Swamp. Frontiers in Earth Science, 2020, 8, .	1.8	9
77	The Ecohydrology of a pioneer wetland species and a drastically altered landscape. Ecohydrology, 2012, 5, 656-667.	2.4	8
78	Stream phosphorus dynamics of minimally impacted coastal plain watersheds. Hydrological Processes, 2017, 31, 1636-1649.	2.6	8
79	Evaluating spatiotemporal variation in water chemistry of the upper Colorado River using longitudinal profiling. Hydrological Processes, 2020, 34, 1782-1793.	2.6	8
80	Nutrient Uptake in the Supraglacial Stream Network of an Antarctic Glacier. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005679.	3.0	8
81	Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns. Water Resources Research, 2017, 53, 5742-5755.	4.2	7
82	A proposed method for estimating interception from near-surface soil moisture response. Hydrology and Earth System Sciences, 2020, 24, 1859-1870.	4.9	6
83	Fertilization has negligible effects on nutrient export and stream biota in two North Florida forested watersheds. Forest Ecology and Management, 2020, 465, 118096.	3.2	6
84	Isolating stream metabolism and nitrate processing at point-scales, and controls on heterogeneity. Freshwater Science, 2018, 37, 238-250.	1.8	5
85	Spatially distributed denitrification in a karst springshed. Hydrological Processes, 2019, 33, 1191-1203.	2.6	5
86	Remote detection of ecosystem degradation in the Everglades ridge-slough landscape. Remote Sensing of Environment, 2020, 247, 111917.	11.0	5
87	Nitrate depletion dynamics and primary production in riverine benthic chambers. Freshwater Science, 2020, 39, 169-182.	1.8	5
88	<i>Inâ€Situ</i> Quantification and Prediction of Water Yield From Southern US Pine Forests. Water Resources Research, 2022, 58, .	4.2	4
89	Spatial metrics for detecting ecosystem degradation in the ridge-slough patterned landscape. Ecological Indicators, 2017, 74, 427-440.	6.3	3
90	Controls on productivity of submerged aquatic vegetation in 2 spring-fed rivers. Freshwater Science, 2020, 39, 1-17.	1.8	3

1

#	Article	IF	CITATIONS
91	Spectral prediction of sediment chemistry in Lake Okeechobee, Florida. Environmental Monitoring and Assessment, 2016, 188, 594.	2.7	1

92 Managing Florida's Plantation Forests in a Changing Climate. , 2017, , .