
Robert Sablowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3224825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cycling in a crowd: Coordination of plant cell division, growth, and cell fate. Plant Cell, 2022, 34, 193-208.	6.6	31
2	A Phloem-Expressed PECTATE LYASE-LIKE Gene Promotes Cambium and Xylem Development. Frontiers in Plant Science, 2022, 13, 888201.	3.6	4
3	<i>ARABIDOPSIS THALIANA HOMEOBOX GENE 1</i> controls plant architecture by locally restricting environmental responses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
4	Cell size controlled in plants using DNA content as an internal scale. Science, 2021, 372, 1176-1181.	12.6	70
5	A Self-Activation Loop Maintains Meristematic Cell Fate for Branching. Current Biology, 2020, 30, 1893-1904.e4.	3.9	30
6	Cell Size Control in Plants. Annual Review of Genetics, 2019, 53, 45-65.	7.6	36
7	Spatiotemporal coordination of cell division and growth during organ morphogenesis. PLoS Biology, 2018, 16, e2005952.	5.6	79
8	The pillars of land plants: new insights into stem development. Current Opinion in Plant Biology, 2018, 45, 11-17.	7.1	26
9	DELLA genes restrict inflorescence meristem function independently of plant height. Nature Plants, 2017, 3, 749-754.	9.3	82
10	Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis. PLoS Genetics, 2016, 12, e1006168.	3.5	91
11	Coordination of plant cell growth and division: collective control or mutual agreement?. Current Opinion in Plant Biology, 2016, 34, 54-60.	7.1	57
12	Control of Oriented Tissue Growth through Repression of Organ Boundary Genes Promotes Stem Morphogenesis. Developmental Cell, 2016, 39, 198-208.	7.0	75
13	Control of patterning, growth, and differentiation by floral organ identity genes. Journal of Experimental Botany, 2015, 66, 1065-1073.	4.8	73
14	Active Control of Cell Size Generates Spatial Detail during Plant Organogenesis. Current Biology, 2015, 25, 2991-2996.	3.9	59
15	Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2830-2835.	7.1	94
16	Interplay between cell growth and cell cycle in plants. Journal of Experimental Botany, 2014, 65, 2703-2714.	4.8	145
17	Roots of beauty. Nature Reviews Molecular Cell Biology, 2013, 14, 268-268.	37.0	2
18	JAGGED Controls Arabidopsis Petal Growth and Shape by Interacting with a Divergent Polarity Field. PLoS Biology, 2013, 11, e1001550.	5.6	122

ROBERT SABLOWSKI

#	Article	IF	CITATIONS
19	JAGGED Controls Growth Anisotropy and Coordination between Cell Size and Cell Cycle during Plant Organogenesis. Current Biology, 2012, 22, 1739-1746.	3.9	70
20	Plant stem cell niches: from signalling to execution. Current Opinion in Plant Biology, 2011, 14, 4-9.	7.1	83
21	The Same Regulatory Point Mutation Changed Seed-Dispersal Structures in Evolution and Domestication. Current Biology, 2011, 21, 1215-1219.	3.9	72
22	Walls around tumours — why plants do not develop cancer. Nature Reviews Cancer, 2010, 10, 794-802.	28.4	67
23	Gibberellins control fruit patterning in <i>Arabidopsis thaliana</i> . Genes and Development, 2010, 24, 2127-2132.	5.9	174
24	Genes and functions controlled by floral organ identity genes. Seminars in Cell and Developmental Biology, 2010, 21, 94-99.	5.0	39
25	Hypersensitivity to DNA damage in plant stem cell niches. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20984-20988.	7.1	238
26	Cytokinin and <i>WUSCHEL</i> tie the knot around plant stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16016-16017.	7.1	22
27	<i>ARABIDOPSIS THALIANA HOMEOBOX GENE1</i> Establishes the Basal Boundaries of Shoot Organs and Controls Stem Growth. Plant Cell, 2008, 20, 2059-2072.	6.6	84
28	Phosducin-Like Protein 3 Is Required for Microtubule-Dependent Steps of Cell Division but Not for Meristem Growth in <i>Arabidopsis</i> Â Â. Plant Cell, 2008, 20, 969-981.	6.6	24
29	Flowering and determinacy in Arabidopsis. Journal of Experimental Botany, 2007, 58, 899-907.	4.8	151
30	The dynamic plant stem cell niches. Current Opinion in Plant Biology, 2007, 10, 639-644.	7.1	87
31	The <i>Arabidopsis thaliana MND1</i> homologue plays a key role in meiotic homologous pairing, synapsis and recombination. Journal of Cell Science, 2006, 119, 2486-2496.	2.0	103
32	Arabidopsis KNOXI Proteins Activate Cytokinin Biosynthesis. Current Biology, 2005, 15, 1566-1571.	3.9	474
33	Intercellular signalling in the transition from stem cells to organogenesis in meristems. Current Opinion in Plant Biology, 2005, 8, 26-31.	7.1	32
34	PLANT SCIENCES: Enhanced: Plant Genes on Steroids. Science, 2005, 307, 1569-1570.	12.6	3
35	Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development (Cambridge), 2005, 132, 429-438.	2.5	335
36	A Link Between mRNA Turnover and RNA Interference in Arabidopsis. Science, 2004, 306, 1046-1048.	12.6	300

ROBERT SABLOWSKI

#	Article	IF	CITATIONS
37	Plant and animal stem cells: conceptually similar, molecularly distinct?. Trends in Cell Biology, 2004, 14, 605-611.	7.9	74
38	Root Development: The Embryo Within?. Current Biology, 2004, 14, R1054-R1055.	3.9	4
39	WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes and Development, 2004, 18, 375-380.	5.9	229
40	<i>AHP2</i> is required for bivalent formation and for segregation of homologous chromosomes in <i>Arabidopsis</i> meiosis. Plant Journal, 2003, 36, 1-11.	5.7	78
41	Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in <i>Arabidopsis</i> . Development (Cambridge), 2002, 129, 3207-3217.	2.5	221
42	Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development (Cambridge), 2002, 129, 3207-17.	2.5	110
43	Paper alert: Plant biology. Current Opinion in Plant Biology, 2001, 4, 463-472.	7.1	0
44	Transcriptional Activation of APETALA1 by LEAFY. Science, 1999, 285, 582-584.	12.6	447
45	A Homolog of NO APICAL MERISTEM Is an Immediate Target of the Floral Homeotic Genes APETALA3/PISTILLATA. Cell, 1998, 92, 93-103.	28.9	540
46	Expression of a flower-specific Myb protein in leaf cells using a viral vector causes ectopic activation of a target promoter Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6901-6905.	7.1	67
47	Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant Journal, 1995, 7, 859-876.	5.7	157

48 Plant Biology., 0, , .

11