
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3224196/publications.pdf Version: 2024-02-01

LOSE C FLOREZ

#	Article	IF	CITATIONS
1	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	27.8	9,051
2	Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science, 2007, 316, 1331-1336.	12.6	2,623
3	Metabolite profiles and the risk of developing diabetes. Nature Medicine, 2011, 17, 448-453.	30.7	2,586
4	Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 2012, 44, 981-990.	21.4	1,748
5	Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics, 2010, 42, 579-589.	21.4	1,631
6	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.	21.4	1,331
7	Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 2014, 46, 234-244.	21.4	959
8	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	27.8	952
9	<i>TCF7L2</i> Polymorphisms and Progression to Diabetes in the Diabetes Prevention Program. New England Journal of Medicine, 2006, 355, 241-250.	27.0	762
10	A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nature Genetics, 2012, 44, 659-669.	21.4	762
11	Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nature Genetics, 2012, 44, 991-1005.	21.4	746
12	Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes. New England Journal of Medicine, 2008, 359, 2208-2219.	27.0	696
13	Variants in MTNR1B influence fasting glucose levels. Nature Genetics, 2009, 41, 77-81.	21.4	662
14	Genetics of diabetes mellitus and diabetes complications. Nature Reviews Nephrology, 2020, 16, 377-390.	9.6	657
15	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.	0.6	615
16	Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nature Genetics, 2010, 42, 142-148.	21.4	591
17	Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. Journal of Clinical Investigation, 2011, 121, 1402-1411.	8.2	537
18	Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children. PLoS Medicine, 2011, 8, e1001116.	8.4	446

#	Article	IF	CITATIONS
19	Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature, 2014, 506, 97-101.	27.8	439
20	Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals. PLoS Genetics, 2012, 8, e1002607.	3.5	419
21	2-Aminoadipic acid is a biomarker for diabetes risk. Journal of Clinical Investigation, 2013, 123, 4309-4317.	8.2	397
22	Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways. Diabetes, 2010, 59, 3229-3239.	0.6	387
23	Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Medicine, 2018, 15, e1002654.	8.4	373
24	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	21.4	365
25	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	21.4	356
26	Common Single Nucleotide Polymorphisms in <i>TCF7L2</i> Are Reproducibly Associated With Type 2 Diabetes and Reduce the Insulin Response to Glucose in Nondiabetic Individuals. Diabetes, 2006, 55, 2890-2895.	0.6	346
27	Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Medicine, 2017, 14, e1002383.	8.4	341
28	The trans-ancestral genomic architecture of glycemic traits. Nature Genetics, 2021, 53, 840-860.	21.4	341
29	Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. Diabetes, 2011, 60, 2624-2634.	0.6	335
30	The genetics of type 2 diabetes: what have we learned from GWAS?. Annals of the New York Academy of Sciences, 2010, 1212, 59-77.	3.8	319
31	Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity. Diabetes, 2014, 63, 2158-2171.	0.6	297
32	Haplotype Structure and Genotype-Phenotype Correlations of the Sulfonylurea Receptor and the Islet ATP-Sensitive Potassium Channel Gene Region. Diabetes, 2004, 53, 1360-1368.	0.6	284
33	The Inherited Basis of Diabetes Mellitus: Implications for the Genetic Analysis of Complex Traits. Annual Review of Genomics and Human Genetics, 2003, 4, 257-291.	6.2	281
34	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	27.8	248
35	Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans. Diabetes, 2010, 59, 1266-1275.	0.6	237
36	Common Variants in 40 Genes Assessed for Diabetes Incidence and Response to Metformin and Lifestyle Intervention in the Diabetes Prevention Program. Diabetes, 2010, 59, 2672-2681.	0.6	234

#	Article	IF	CITATIONS
37	Association of a Low-Frequency Variant in <i>HNF1A</i> With Type 2 Diabetes in a Latino Population. JAMA - Journal of the American Medical Association, 2014, 311, 2305.	7.4	230
38	The prevention of type 2 diabetes. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 382-393.	2.8	216
39	New Susceptibility Loci Associated with Kidney Disease in Type 1 Diabetes. PLoS Genetics, 2012, 8, e1002921.	3.5	216
40	CUBN Is a Gene Locus for Albuminuria. Journal of the American Society of Nephrology: JASN, 2011, 22, 555-570.	6.1	208
41	Precision Medicine in Diabetes: A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2020, 43, 1617-1635.	8.6	204
42	A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans. PLoS ONE, 2012, 7, e29202.	2.5	197
43	Genetic Risk Scores for Diabetes Diagnosis and Precision Medicine. Endocrine Reviews, 2019, 40, 1500-1520.	20.1	192
44	Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nature Communications, 2015, 6, 5897.	12.8	173
45	Updated Genetic Score Based on 34 Confirmed Type 2 Diabetes Loci Is Associated With Diabetes Incidence and Regression to Normoglycemia in the Diabetes Prevention Program. Diabetes, 2011, 60, 1340-1348.	0.6	172
46	Genetic Risk Reclassification for Type 2 Diabetes by Age Below or Above 50 Years Using 40 Type 2 Diabetes Risk Single Nucleotide Polymorphisms. Diabetes Care, 2011, 34, 121-125.	8.6	165
47	Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nature Genetics, 2016, 48, 1055-1059.	21.4	165
48	Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP × environment regression coefficients. Genetic Epidemiology, 2011, 35, 11-18.	1.3	158
49	Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nature Communications, 2016, 7, 10531.	12.8	149
50	Personalized Genetic Risk Counseling to Motivate Diabetes Prevention. Diabetes Care, 2013, 36, 13-19.	8.6	143
51	Heterogeneous Contribution of Insulin Sensitivity and Secretion Defects to Gestational Diabetes Mellitus. Diabetes Care, 2016, 39, 1052-1055.	8.6	142
52	A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes, 2018, 67, 1414-1427.	0.6	136
53	Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. Journal of the American Society of Nephrology: JASN, 2019, 30, 2000-2016.	6.1	135
54	Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nature Genetics, 2013, 45, 1380-1385.	21.4	129

#	Article	IF	CITATIONS
55	Gene-Environment and Gene-Treatment Interactions in Type 2 Diabetes. Diabetes Care, 2013, 36, 1413-1421.	8.6	128
56	Type 2 diabetes: genetic data sharing to advance complex disease research. Nature Reviews Genetics, 2016, 17, 535-549.	16.3	128
57	Polygenic Type 2 Diabetes Prediction at the Limit of Common Variant Detection. Diabetes, 2014, 63, 2172-2182.	0.6	127
58	Effects of the Type 2 Diabetes-Associated <i>PPARG</i> P12A Polymorphism on Progression to Diabetes and Response to Troglitazone. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1502-1509.	3.6	122
59	Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms. Cell, 2017, 170, 199-212.e20.	28.9	121
60	Metformin Pharmacogenomics: Current Status and Future Directions. Diabetes, 2014, 63, 2590-2599.	0.6	112
61	The Genetics of Type 2 Diabetes: A Realistic Appraisal in 2008. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4633-4642.	3.6	109
62	Cardiometabolic risk factors for COVID-19 susceptibility and severity: A Mendelian randomization analysis. PLoS Medicine, 2021, 18, e1003553.	8.4	105
63	Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2020, 63, 1671-1693.	6.3	102
64	Metabolite Profiles of Diabetes Incidence and Intervention Response in the Diabetes Prevention Program. Diabetes, 2016, 65, 1424-1433.	0.6	101
65	The Genetic Landscape of Renal Complications in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2017, 28, 557-574.	6.1	101
66	Effects of Weight Loss, Weight Cycling, and Weight Loss Maintenance on Diabetes Incidence and Change in Cardiometabolic Traits in the Diabetes Prevention Program. Diabetes Care, 2014, 37, 2738-2745.	8.6	97
67	The new type 2 diabetes gene TCF7L2. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 391-396.	2.5	96
68	Extension of Type 2 Diabetes Genome-Wide Association Scan Results in the Diabetes Prevention Program. Diabetes, 2008, 57, 2503-2510.	0.6	93
69	Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose. Diabetologia, 2018, 61, 1315-1324.	6.3	93
70	The <i>ENPP1</i> K121Q Polymorphism Is Associated With Type 2 Diabetes in European Populations. Diabetes, 2008, 57, 1125-1130.	0.6	91
71	A Global Overview of Precision Medicine in Type 2 Diabetes. Diabetes, 2018, 67, 1911-1922.	0.6	90
72	FTO genotype and weight loss: systematic review and meta-analysis of 9563 individual participant data from eight randomised controlled trials. BMJ, The, 2016, 354, i4707.	6.0	88

#	Article	IF	CITATIONS
73	A 100K Genome-Wide Association Scan for Diabetes and Related Traits in the Framingham Heart Study: Replication and Integration With Other Genome-Wide Datasets. Diabetes, 2007, 56, 3063-3074.	0.6	87
74	Metabolite Traits and Genetic Risk Provide Complementary Information for the Prediction of Future Type 2 Diabetes. Diabetes Care, 2014, 37, 2508-2514.	8.6	87
75	Polyunsaturated Fatty Acid Desaturation Is a Mechanism for Glycolytic NAD+ Recycling. Cell Metabolism, 2019, 29, 856-870.e7.	16.2	87
76	Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes. Nature Communications, 2018, 9, 321.	12.8	85
77	Genomics of type 2 diabetes mellitus: implications for the clinician. Nature Reviews Endocrinology, 2009, 5, 429-436.	9.6	83
78	Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes. Nature Genetics, 2021, 53, 1534-1542.	21.4	81
79	Genome-wide association with diabetes-related traits in the Framingham Heart Study. BMC Medical Genetics, 2007, 8, S16.	2.1	80
80	Association Testing in 9,000 People Fails to Confirm the Association of the Insulin Receptor Substrate-1 G972R Polymorphism With Type 2 Diabetes. Diabetes, 2004, 53, 3313-3318.	0.6	78
81	Association Testing of Previously Reported Variants in a Large Case-Control Meta-analysis of Diabetic Nephropathy. Diabetes, 2012, 61, 2187-2194.	0.6	77
82	Common Variants in the ENPP1 Gene Are Not Reproducibly Associated With Diabetes or Obesity. Diabetes, 2006, 55, 3180-3184.	0.6	76
83	Genetic Predisposition to Weight Loss and Regain With Lifestyle Intervention: Analyses From the Diabetes Prevention Program and the Look AHEAD Randomized Controlled Trials. Diabetes, 2015, 64, 4312-4321.	0.6	72
84	Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies <i>BCL2</i> and <i>FAM19A2</i> as Novel Insulin Sensitivity Loci. Diabetes, 2016, 65, 3200-3211.	0.6	67
85	Chromosome 2q31.1 Associates with ESRD in Women with Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2013, 24, 1537-1543.	6.1	66
86	Genetic Evidence That Carbohydrate-Stimulated Insulin Secretion Leads to Obesity. Clinical Chemistry, 2018, 64, 192-200.	3.2	66
87	The C Allele of <i>ATM</i> rs11212617 Does Not Associate With Metformin Response in the Diabetes Prevention Program. Diabetes Care, 2012, 35, 1864-1867.	8.6	65
88	The pharmacogenetics of metformin. Diabetologia, 2017, 60, 1648-1655.	6.3	65
89	Genetic Evidence for a Causal Role of Obesity in Diabetic Kidney Disease. Diabetes, 2015, 64, 4238-4246.	0.6	63
90	Genetic Architecture of Type 2 Diabetes: Recent Progress and Clinical Implications. Diabetes Care, 2009, 32, 1107-1114.	8.6	56

#	Article	IF	CITATIONS
91	The impact of non-additive genetic associations on age-related complex diseases. Nature Communications, 2021, 12, 2436.	12.8	55
92	An update on the pharmacogenomics of metformin: progress, problems and potential. Pharmacogenomics, 2014, 15, 529-539.	1.3	52
93	A Loss-of-Function Splice Acceptor Variant in <i>IGF2</i> Is Protective for Type 2 Diabetes. Diabetes, 2017, 66, 2903-2914.	0.6	52
94	Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool?. Diabetologia, 2017, 60, 800-807.	6.3	51
95	Association Testing of the Protein Tyrosine Phosphatase 1B Gene (PTPN1) With Type 2 Diabetes in 7,883 People. Diabetes, 2005, 54, 1884-1891.	0.6	49
96	Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nature Communications, 2021, 12, 3505.	12.8	49
97	The Association ofENPP1K121Q with Diabetes Incidence Is Abolished by Lifestyle Modification in the Diabetes Prevention Program. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 449-455.	3.6	48
98	Cenetic Predisposition to Long-Term Nondiabetic Deteriorations in Glucose Homeostasis. Diabetes, 2011, 60, 345-354.	0.6	48
99	Genetic Susceptibility to Type 2 Diabetes and Implications for Antidiabetic Therapy. Annual Review of Medicine, 2008, 59, 95-111.	12.2	47
100	Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2022, 101, 1126-1141.	5.2	46
101	Genetically Driven Hyperglycemia Increases Risk of Coronary Artery Disease Separately From Type 2 Diabetes. Diabetes Care, 2017, 40, 687-693.	8.6	45
102	Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. Molecular Psychiatry, 2019, 24, 1920-1932.	7.9	44
103	TCF7L2 Variants Associate with CKD Progression and Renal Function in Population-Based Cohorts. Journal of the American Society of Nephrology: JASN, 2008, 19, 1989-1999.	6.1	43
104	Haplotype Structure of the <i>ENPP1</i> Gene and Nominal Association of the K121Q Missense Single Nucleotide Polymorphism With Glycemic Traits in the Framingham Heart Study. Diabetes, 2008, 57, 1971-1977.	0.6	42
105	Precision Medicine in Diabetes: Is It Time?. Diabetes Care, 2016, 39, 1085-1088.	8.6	42
106	Effects of Genetic Variants Previously Associated with Fasting Glucose and Insulin in the Diabetes Prevention Program. PLoS ONE, 2012, 7, e44424.	2.5	39
107	The First Genome-Wide Association Study for Type 2 Diabetes in Youth: The Progress in Diabetes Genetics in Youth (ProDiGY) Consortium. Diabetes, 2021, 70, 996-1005.	0.6	37
108	<i>TCF7L2</i> Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care, 2018, 41, 554-561.	8.6	35

#	Article	IF	CITATIONS
109	Lifestyle and Metformin Ameliorate Insulin Sensitivity Independently of the Genetic Burden of Established Insulin Resistance Variants in Diabetes Prevention Program Participants. Diabetes, 2016, 65, 520-526.	0.6	34
110	Thyroid dysfunction in patients with Down syndrome: Results from a multiâ€institutional registry study. American Journal of Medical Genetics, Part A, 2017, 173, 1539-1545.	1.2	34
111	Mendelian Randomization Analysis of Hemoglobin A1c as a Risk Factor for Coronary Artery Disease. Diabetes Care, 2019, 42, 1202-1208.	8.6	33
112	Precision medicine in diabetes: an opportunity for clinical translation. Annals of the New York Academy of Sciences, 2018, 1411, 140-152.	3.8	32
113	Pathways Targeted by Antidiabetes Drugs Are Enriched for Multiple Genes Associated With Type 2 Diabetes Risk. Diabetes, 2015, 64, 1470-1483.	0.6	31
114	Genetic Determinants of Glycemic Traits and the Risk of Gestational Diabetes Mellitus. Diabetes, 2018, 67, 2703-2709.	0.6	30
115	Type 2 Diabetes Partitioned Polygenic Scores Associate With Disease Outcomes in 454,193 Individuals Across 13 Cohorts. Diabetes Care, 2022, 45, 674-683.	8.6	29
116	Haplotype Structures and Large-Scale Association Testing of the 5' AMP-Activated Protein Kinase Genes PRKAA2, PRKAB1, and PRKAB2 With Type 2 Diabetes. Diabetes, 2006, 55, 849-855.	0.6	28
117	Pharmacogenetics in type 2 diabetes: potential implications for clinical practice. Genome Medicine, 2011, 3, 76.	8.2	28
118	Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis. BMJ: British Medical Journal, 2019, 366, l4292.	2.3	28
119	The Genetic Basis of Type 2 Diabetes in Hispanics and Latin Americans: Challenges and Opportunities. Frontiers in Public Health, 2017, 5, 329.	2.7	27
120	Interplay of Dinner Timing and <i>MTNR1B</i> Type 2 Diabetes Risk Variant on Glucose Tolerance and Insulin Secretion: A Randomized Crossover Trial. Diabetes Care, 2022, 45, 512-519.	8.6	26
121	No Interactions Between Previously Associated 2-Hour Glucose Gene Variants and Physical Activity or BMI on 2-Hour Glucose Levels. Diabetes, 2012, 61, 1291-1296.	0.6	23
122	Genome-Wide Meta-analysis Identifies Genetic Variants Associated With Glycemic Response to Sulfonylureas. Diabetes Care, 2021, 44, 2673-2682.	8.6	23
123	Metabolite Profiles of Incident Diabetes and Heterogeneity of Treatment Effect in the Diabetes Prevention Program. Diabetes, 2019, 68, 2337-2349.	0.6	22
124	A Polygenic Score for Type 2 Diabetes Risk Is Associated With Both the Acute and Sustained Response to Sulfonylureas. Diabetes, 2021, 70, 293-300.	0.6	22
125	Genetic analysis of dietary intake identifies new loci and functional links with metabolic traits. Nature Human Behaviour, 2022, 6, 155-163.	12.0	22
126	Monogenic Diabetes in Youth With Presumed Type 2 Diabetes: Results From the Progress in Diabetes Genetics in Youth (ProDiGY) Collaboration. Diabetes Care, 2021, 44, 2312-2319.	8.6	21

#	Article	IF	CITATIONS
127	Racial/Ethnic Differences in Association of Fasting Glucose–Associated Genomic Loci With Fasting Glucose, HOMA-B, and Impaired Fasting Glucose in the U.S. Adult Population. Diabetes Care, 2010, 33, 2370-2377.	8.6	20
128	The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH): Design of a pharmacogenetic Resource for Type 2 Diabetes. PLoS ONE, 2015, 10, e0121553.	2.5	20
129	Clinical translation of genetic predictors for type 2 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2009, 16, 100-106.	2.3	19
130	National down syndrome patient database: Insights from the development of a multi enter registry study. American Journal of Medical Genetics, Part A, 2015, 167, 2520-2526.	1.2	19
131	A Genome-Wide Association Study of Treated A1C: A Genetic Needle in an Environmental Haystack?. Diabetes, 2010, 59, 332-334.	0.6	18
132	Leveraging Genetics to Advance Type 2 Diabetes Prevention. PLoS Medicine, 2016, 13, e1002102.	8.4	17
133	Polygenic scores, diet quality, and type 2 diabetes risk: An observational study among 35,759 adults from 3 US cohorts. PLoS Medicine, 2022, 19, e1003972.	8.4	17
134	The Kruppel-Like Factor 11 (KLF11) Q62R Polymorphism Is Not Associated With Type 2 Diabetes in 8,676 People. Diabetes, 2006, 55, 3620-3624.	0.6	16
135	A roadmap to achieve pharmacological precision medicine in diabetes. Diabetologia, 2022, 65, 1830-1838.	6.3	16
136	Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease. Diabetologia, 2022, 65, 1495-1509.	6.3	16
137	Mining the Genome for Therapeutic Targets. Diabetes, 2017, 66, 1770-1778.	0.6	14
138	Mexican Carriers of the <i>HNF1A</i> p.E508K Variant Do Not Experience an Enhanced Response to Sulfonylureas. Diabetes Care, 2018, 41, 1726-1731.	8.6	14
139	Heterogeneity of Diabetes: Î ² -Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Care, 2022, 45, 3-22.	8.6	14
140	Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers. Nature Communications, 2022, 13, .	12.8	14
141	Genetics of Diabetic Kidney Disease. Seminars in Nephrology, 2016, 36, 474-480.	1.6	13
142	A Polygenic Lipodystrophy Genetic Risk Score Characterizes Risk Independent of BMI in the Diabetes Prevention Program. Journal of the Endocrine Society, 2019, 3, 1663-1677.	0.2	13
143	Interaction Between Type 2 Diabetes Prevention Strategies and Genetic Determinants of Coronary Artery Disease on Cardiometabolic Risk Factors. Diabetes, 2020, 69, 112-120.	0.6	13
144	High-density haplotype structure and association testing of the insulin-degrading enzyme (IDE) gene with type 2 diabetes in 4,206 people. Diabetes, 2006, 55, 128-35.	0.6	13

#	Article	IF	CITATIONS
145	Does Metformin Work for Everyone? A Genome-wide Association Study for Metformin Response. Current Diabetes Reports, 2011, 11, 467-469.	4.2	11
146	The Need for Precision Medicine to be Applied to Diabetes. Journal of Diabetes Science and Technology, 2020, 14, 1122-1128.	2.2	10
147	Smoking-by-genotype interaction in type 2 diabetes risk and fasting glucose. PLoS ONE, 2020, 15, e0230815.	2.5	10
148	Genetic Loci and Physiologic Pathways Involved in Gestational Diabetes Mellitus Implicated Through Clustering. Diabetes, 2021, 70, 268-281.	0.6	10
149	Genetic Susceptibility to Type 2 Diabetes and Implications for Therapy. Journal of Diabetes Science and Technology, 2009, 3, 690-696.	2.2	7
150	Pharmacogenetic Perturbations in Humans as a Tool to Generate Mechanistic Insight. Diabetes, 2013, 62, 3019-3021.	0.6	7
151	Found in Translation: A Type 1 Diabetes Genetic Risk Score Applied to Clinical Diagnosis. Diabetes Care, 2016, 39, 330-332.	8.6	7
152	Recessive Genome-Wide Meta-analysis Illuminates Genetic Architecture of Type 2 Diabetes. Diabetes, 2022, 71, 554-565.	0.6	7
153	Gain-of-Function Claims for Type-2-Diabetes-Associated Coding Variants in SLC16A11 Are Not Supported by the Experimental Data. Cell Reports, 2019, 29, 778-780.	6.4	6
154	SAT-123 Burden of Type 2 Diabetes Genetic Risk Alleles Differs Among Physiologic Subtypes of Gestational Diabetes Mellitus. Journal of the Endocrine Society, 2019, 3, .	0.2	5
155	Ordered Stratification to Reduce Heterogeneity in Linkage to Diabetesâ€related Quantitative Traits. Obesity, 2008, 16, 2314-2322.	3.0	4
156	Type 2 Diabetes and Genetics, 2010: Translating Knowledge into Understanding. Current Cardiovascular Risk Reports, 2010, 4, 437-445.	2.0	4
157	Personalized Comments on Challenges and Opportunities in Kidney Disease Therapeutics: The Glom-NExT Symposium. Seminars in Nephrology, 2016, 36, 448.	1.6	2
158	Association of <i>GLP1R</i> Polymorphisms With the Incretin Response. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2580-2588.	3.6	2
159	Genetics of Drug Response in Diabetes. Frontiers in Diabetes, 2014, , 158-172.	0.4	1
160	Extending precision medicine tools to populations at high risk of type 2 diabetes. PLoS Medicine, 2022, 19, e1003989.	8.4	1
161	Knowledge Is Power. JAMA - Journal of the American Medical Association, 2007, 298, 1489-90.	7.4	0
162	The dawn of prospective pharmacogenetic testing in type 2 diabetes. Current Diabetes Reports, 2009, 9, 95-97.	4.2	0

#	Article	IF	CITATIONS
163	Novel genetic findings applied to the clinic in type 2 diabetes. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2009, 56, 21-25.	0.8	0
164	Genetics and biobanks converge to resolve a vexing knowledge gap in diabetes. Lancet Diabetes and Endocrinology,the, 2018, 6, 87-89.	11.4	0
165	0045 Decreased Oral Glucose Tolerance And Insulin Response During Biological Evening Versus Morning Among Adults Under Free-living Conditions. Sleep, 2019, 42, A18-A19.	1.1	0
166	Large-Scale, Genome-Wide Gene-Diet Interaction Testing for HbA1c Using Derived Dietary Patterns in the UK Biobank. Current Developments in Nutrition, 2020, 4, nzaa058_038.	0.3	0
167	Advancing Dinner Timing Is an Effective Strategy in Improving Glucose Tolerance in Free-Living Adults: A Randomized Cross-Over Trial. Current Developments in Nutrition, 2020, 4, nzaa047_005.	0.3	0
168	Genome-Wide Meta-Analysis Identifies the Organic Anion-Transporting Polypeptide Gene <i>SLCO1B1</i> and Statins as Modifiers of Glycemic Response to Sulfonylureas. SSRN Electronic Journal, 0, , .	0.4	0