Matthew J Picklo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3223712/publications.pdf

Version: 2024-02-01

96 papers

3,301 citations

168829 31 h-index 54 g-index

96 all docs

96 docs citations

96 times ranked 5112 citing authors

#	Article	IF	CITATIONS
1	Identification of High and Low Branched-Chain Fatty Acid–Producing Phenotypes in Holstein Cows following High-Forage and Low-Forage Diets in a Crossover Designed Trial. Current Developments in Nutrition, 2022, 6, nzab154.	0.1	6
2	Leptin Receptor Deficiency Results in Hyperphagia and Increased Fatty Acid Mobilization during Fasting in Rainbow Trout (Oncorhynchus mykiss). Biomolecules, 2022, 12, 516.	1.8	5
3	Identification of different lipoprotein response types in people following a Mediterranean diet pattern with and without whole eggs. Nutrition Research, 2022, 105, 82-96.	1.3	O
4	Hepatic Fatty Acid and Transcriptome Profiles during the Transition from Vegetable―to Fish Oilâ€Based Diets in Rainbow Trout (<scp><i>Oncorhynchus mykiss</i>Viscp>). Lipids, 2021, 56, 189-200.</scp>	0.7	5
5	Simple, Rapid Lipidomic Analysis of Triacylglycerols in Bovine Milk by Infusionâ€Electrospray Mass Spectrometry. Lipids, 2021, 56, 243-255.	0.7	8
6	Time-restricted feeding mice a high-fat diet induces a unique lipidomic profile. Journal of Nutritional Biochemistry, 2021, 88, 108531.	1.9	10
7	Identification of Phenotypic Lipidomic Signatures in Response to Long Chain nâ€3 Polyunsaturated Fatty Acid Supplementation in Humans. Journal of the American Heart Association, 2021, 10, e018126.	1.6	6
8	Mammary Tumorigenesis and Metabolome in Male Adipose Specific Monocyte Chemotactic Protein-1 Deficient MMTV-PyMT Mice Fed a High-Fat Diet. Frontiers in Oncology, 2021, 11, 667843.	1.3	4
9	Supplementing rainbow trout (<i>Oncorhynchus mykiss</i>) broodstock diets with choline and methionine improves growth in offspring. Journal of the World Aquaculture Society, 2020, 51, 266-281.	1.2	4
10	Increasing Dietary Fish Oil Reduces Adiposity and Mitigates Bone Deterioration in Growing C57BL/6 Mice Fed a High-Fat Diet. Journal of Nutrition, 2020, 150, 99-107.	1.3	17
11	Metabolome of Mammary Tumors Differs from Normal Mammary Glands But Is Not Altered by Time-restricted Feeding Under Obesogenic Conditions. Anticancer Research, 2020, 40, 3697-3705.	0.5	3
12	Decreasing the Ratio of Dietary Linoleic to \hat{l} ±-Linolenic Acid from 10 to 4 by Changing Only the Former Does Not Prevent Adiposity or Bone Deterioration in Obese Mice. Journal of Nutrition, 2020, 150, 1370-1378.	1.3	4
13	Impact of beef consumption on saturated fat intake in the United States adult population: Insights from modeling the influences of bovine genetics and nutrition. Meat Science, 2020, 169, 108225.	2.7	11
14	Plasma Metabolomic Changes in Mice With Time-restricted Feeding-attenuated Spontaneous Metastasis of Lewis Lung Carcinoma. Anticancer Research, 2020, 40, 1833-1841.	0.5	7
15	23 Current progress in the Agricultural Research Service Beef Grand Challenge: A large-scale genetics by environment by management evaluation project. Journal of Animal Science, 2020, 98, 13-14.	0.2	1
16	Simplified Mass Spectrometric Analysis of Ceramides using a Common Collision Energy. Lipids, 2019, 54, 471-477.	0.7	6
17	Quantitation of Glutathione, Glutathione Disulphide, and Protein-Glutathione Mixed Disulphides by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Methods in Molecular Biology, 2019, 1967, 197-210.	0.4	2
18	Time-restricted Feeding Attenuates High-fat Diet-enhanced Spontaneous Metastasis of Lewis Lung Carcinoma in Mice. Anticancer Research, 2019, 39, 1739-1748.	0.5	30

#	Article	IF	CITATIONS
19	Dietary saturated fatty acid type impacts obesity-induced metabolic dysfunction and plasma lipidomic signatures in mice. Journal of Nutritional Biochemistry, 2019, 64, 32-44.	1.9	36
20	Correlations of SELENOF and SELENOP genotypes with serum selenium levels and prostate cancer. Prostate, 2018, 78, 279-288.	1.2	23
21	Deposition and mobilization of lipids varies across the rainbow trout fillet during feed deprivation and transition from plant to fish oil-based diets. Aquaculture, 2018, 491, 39-49.	1.7	7
22	Selective enrichment of n-3 fatty acids in human plasma lipid motifs following intake of marine fish. Journal of Nutritional Biochemistry, 2018, 54, 57-65.	1.9	28
23	Modeled replacement of traditional soybean and canola oil with high-oleic varieties increases monounsaturated fatty acid and reduces both saturated fatty acid and polyunsaturated fatty acid intake in the US adult population. American Journal of Clinical Nutrition, 2018, 108, 594-602.	2.2	38
24	Lipidomic Impacts of an Obesogenic Diet Upon Lewis Lung Carcinoma in Mice. Frontiers in Oncology, 2018, 8, 134.	1.3	16
25	Comparative effects of high oleic acid vs high mixed saturated fatty acid obesogenic diets upon PUFA metabolism in mice. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 119, 25-37.	1.0	30
26	Fatty acid partitioning varies across fillet regions during sexual maturation in female rainbow trout (Oncorhynchus mykiss). Aquaculture, 2017, 475, 52-60.	1.7	11
27	PPAR mRNA Levels Are Modified by Dietary n–3 Fatty Acid Restriction and Energy Restriction in the Brain and Liver of Growing Rats. Journal of Nutrition, 2017, 147, 161-169.	1.3	9
28	Effects of cooking techniques on fatty acid and oxylipin content of farmed rainbow trout (<i>Oncorhynchus mykiss</i>). Food Science and Nutrition, 2017, 5, 1195-1204.	1.5	19
29	Selenium levels in human breast carcinoma tissue are associated with a common polymorphism in the gene for SELENOP (Selenoprotein P). Journal of Trace Elements in Medicine and Biology, 2017, 39, 227-233.	1.5	19
30	Relationship of the Reported Intakes of Fat and Fatty Acids to Body Weight in US Adults. Nutrients, 2017, 9, 438.	1.7	67
31	Twice weekly intake of farmed Atlantic salmon (Salmo salar) positively influences lipoprotein concentration and particle size in overweight men and women. Nutrition Research, 2016, 36, 899-906.	1.3	18
32	Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes. Chemico-Biological Interactions, 2016, 253, 48-59.	1.7	3
33	Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion-trap mass spectrometer. Journal of Lipid Research, 2016, 57, 2225-2234.	2.0	29
34	Highâ€Fat Diets Containing Different Amounts of n3 and n6 Polyunsaturated Fatty Acids Modulate Inflammatory Cytokine Production in Mice. Lipids, 2016, 51, 571-582.	0.7	25
35	A Highâ€Fat, Highâ€Oleic Diet, But Not a Highâ€Fat, Saturated Diet, Reduces Hepatic αâ€Linolenic Acid and Eicosapentaenoic Acid Content in Mice. Lipids, 2016, 51, 537-547.	0.7	36

Effects of Frying in Various Cooking Oils on Fatty Acid Content of Farmed Rainbow Trout () Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td

#	Article	IF	Citations
37	Involuntary Wheel Running Improves but Does Not Fully Reverse the Deterioration of Bone Structure of Obese Rats Despite Decreasing Adiposity. Calcified Tissue International, 2015, 97, 145-155.	1.5	19
38	Antioxidant supplementation and obesity have independent effects on hepatic oxylipin profiles in insulin-resistant, obesity-prone rats. Free Radical Biology and Medicine, 2015, 89, 182-191.	1.3	22
39	Glutathionyl systems and metabolic dysfunction in obesity. Nutrition Reviews, 2015, 73, 858-868.	2.6	37
40	Consumption of Honey, Sucrose, and High-Fructose Corn Syrup Produces Similar Metabolic Effects in Glucose-Tolerant and -Intolerant Individuals ,. Journal of Nutrition, 2015, 145, 2265-2272.	1.3	49
41	Quantitation of protein S-glutathionylation by liquid chromatography–tandem mass spectrometry: Correction for contaminating glutathione and glutathione disulfide. Analytical Biochemistry, 2015, 469, 54-64.	1.1	9
42	Pulicaria jaubertii Extract Prevents Triglyceride Deposition in 3T3‣1 Adipocytes. FASEB Journal, 2015, 29, 924.19.	0.2	0
43	Intake of Seafood in the US Varies by Age, Income, and Education Level but Not by Race-Ethnicity. Nutrients, 2014, 6, 6060-6075.	1.7	75
44	Skin and plasma carotenoid response to a provided intervention diet high in vegetables and fruit: uptake and depletion kinetics , , ,. American Journal of Clinical Nutrition, 2014, 100, 930-937.	2.2	82
45	N-Acetylcysteine Supplementation Decreases Osteoclast Differentiation and Increases Bone Mass in Mice Fed a High-Fat Diet. Journal of Nutrition, 2014, 144, 289-296.	1.3	26
46	Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1. Chemico-Biological Interactions, 2013, 202, 85-90.	1.7	10
47	Issues of Fish Consumption for Cardiovascular Disease Risk Reduction. Nutrients, 2013, 5, 1081-1097.	1.7	124
48	Dose-Dependent Consumption of Farmed Atlantic Salmon (Salmo salar) Increases Plasma Phospholipid n-3 Fatty Acids Differentially. Journal of the Academy of Nutrition and Dietetics, 2013, 113, 282-287.	0.4	39
49	Adipose Dysfunction, Interaction of Reactive Oxygen Species, and Inflammation. Advances in Nutrition, 2012, 3, 734-735.	2.9	8
50	Total dietary fat and fatty acid content modifies plasma phospholipid fatty acids, desaturase activity indices, and urinary prostaglandin E in women. Nutrition Research, 2012, 32, 1-7.	1.3	33
51	NAD(P)H:quinone oxidoreductase 1 activity reduces hypertrophy in 3T3-L1 adipocytes. Free Radical Biology and Medicine, 2012, 53, 690-700.	1.3	20
52	The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism. Journal of Nutritional Biochemistry, 2012, 23, 1201-1206.	1.9	196
53	Twiceâ€weekly consumption of farmed Atlantic salmon increases plasma content of phospholipid nâ€3 fatty acids. FASEB Journal, 2012, 26, 1016.4.	0.2	0
54	Baking Reduces Prostaglandin, Resolvin, and Hydroxy-Fatty Acid Content of Farm-Raised Atlantic Salmon (<i>Salmo salar</i>). Journal of Agricultural and Food Chemistry, 2011, 59, 11278-11286.	2.4	34

#	Article	IF	Citations
55	Trans-4-oxo-2-nonenal potently alters mitochondrial function. Free Radical Biology and Medicine, 2011, 50, 400-407.	1.3	23
56	NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2. Chemico-Biological Interactions, 2011, 191, 147-152.	1.7	5
57	Obesity reduces methionine sulphoxide reductase activity in visceral adipose tissue. Free Radical Research, 2011, 45, 1052-1060.	1.5	18
58	A low fat diet enhances polyunsaturated fatty acid desaturation and elongation independent of n3 enrichment. FASEB Journal, 2011, 25, 338.2.	0.2	0
59	Ethanol withdrawal increases glutathione adducts of 4-hydroxy-2-hexenal but not 4-hydroxyl-2-nonenal in the rat cerebral cortex. Free Radical Biology and Medicine, 2010, 48, 384-390.	1.3	18
60	Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: Make some room HNE…. Free Radical Biology and Medicine, 2010, 49, 1-8.	1.3	159
61	The conserved R166 residue of ALDH5A (succinic semialdehyde dehydrogenase) has multiple functional roles. Chemico-Biological Interactions, 2009, 178, 70-74.	1.7	2
62	Structural Characterization of α,βâ€Unsaturated Aldehydes by GC/MS is Dependent upon Ionization Method. Lipids, 2008, 43, 765-774.	0.7	15
63	Trans-4-hydroxy-2-hexenal is a neurotoxic product of docosahexaenoic (22:6; n-3) acid oxidation. Journal of Neurochemistry, 2008, 105, 714-724.	2.1	87
64	Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochemical and Biophysical Research Communications, 2008, 376, 615-619.	1.0	57
65	Analysis of HNE metabolism in CNS models. Redox Report, 2007, 12, 16-19.	1.4	4
66	Carbonylation of Adipose Proteins in Obesity and Insulin Resistance. Molecular and Cellular Proteomics, 2007, 6, 624-637.	2.5	212
67	4-Hydroxy-2-Nonenal Increases Superoxide Anion Radical in Endothelial Cells via Stimulated GTP Cyclohydrolase Proteasomal Degradation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2340-2347.	1.1	85
68	Inhibition of aldehyde detoxification in CNS mitochondria by fungicides. NeuroToxicology, 2007, 28, 143-149.	1.4	37
69	Enantioselective Oxidation of trans-4-Hydroxy-2-Nonenal Is Aldehyde Dehydrogenase Isozyme and Mg2+ Dependent. Chemical Research in Toxicology, 2007, 20, 887-895.	1.7	32
70	Mitochondrial Effects of Lipid-Derived Neurotoxins. Journal of Alzheimer's Disease, 2007, 12, 185-193.	1.2	32
71	Direct and indirect high-performance liquid chromatography enantioseparation of trans-4-hydroxy-2-nonenoic acid. Journal of Chromatography A, 2007, 1149, 305-311.	1.8	8
72	Quantification of trans-4-hydroxy-2-nonenal enantiomers and metabolites by LC–ESI-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 857, 115-122.	1.2	15

#	Article	IF	CITATIONS
73	Astrocytic Biotransformation of trans-4-Hydroxy-2-nonenal Is Dose-Dependent. Chemical Research in Toxicology, 2006, 19, 844-851.	1.7	21
74	Midpolarity and Nonpolar Wood Smoke Particulate Matter Fractions Deplete Glutathione in RAW 264.7 Macrophages. Chemical Research in Toxicology, 2006, 19, 255-261.	1.7	43
75	Elevated oxidation of docosahexaenoic acid, 22:6 (nâ^'3), in brain regions of rats undergoing ethanol withdrawal. Neuroscience Letters, 2006, 405, 172-174.	1.0	17
76	Nitrate-Based Vasodilators Inhibit Multiple Vascular Aldehyde Dehydrogenases. Cardiovascular Toxicology, 2005, 5, 321-332.	1.1	15
77	Enantioselective metabolism of trans-4-hydroxy-2-nonenal by brain mitochondria. Free Radical Biology and Medicine, 2005, 39, 913-924.	1.3	27
78	4â€Hydroxy―trans â€2â€nonenoic acid is a γâ€hydroxybutyrate receptor ligand in the cerebral cortex and hippocampus. Journal of Neurochemistry, 2004, 89, 1462-1470.	2.1	16
79	Inhibition of Cardiac Myocyte Contraction by 4-Hydroxy-<1>Trans<1>-2-Nonenal. Cardiovascular Toxicology, 2004, 4, 21-28.	1.1	17
80	TOXICITY OF WIDE-RANGE POLARITY FRACTIONS FROM WOOD SMOKE AND DIESEL EXHAUST PARTICULATE OBTAINED USING HOT PRESSURIZED WATER. Environmental Toxicology and Chemistry, 2004, 23, 2243.	2.2	27
81	Oxidation of 4-hydroxy-2-nonenal by succinic semialdehyde dehydrogenase (ALDH5A). Journal of Neurochemistry, 2004, 86, 298-305.	2.1	63
82	Metabolism of 4-Hydroxy-trans-2-nonenal by Central Nervous System Mitochondria Is Dependent on Age and NAD+Availability. Chemical Research in Toxicology, 2004, 17, 1272-1279.	1.7	44
83	Mitochondrial oxidation of 4-hydroxy-2-nonenal in rat cerebral cortex. Journal of Neurochemistry, 2003, 84, 1313-1321.	2.1	35
84	Mercapturate Metabolism of 4-Hydroxy-2-Nonenal in Rat and Human Cerebrum. Journal of Neuropathology and Experimental Neurology, 2003, 62, 146-153.	0.9	26
85	Carbonyl Toxicology and Alzheimer's Disease. Toxicology and Applied Pharmacology, 2002, 184, 187-197.	1.3	188
86	Expression and Activities of Aldo-Keto Oxidoreductases in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2001, 60, 686-695.	0.9	80
87	4-Hydroxy-2(E)-Nonenal Inhibits CNS Mitochondrial Respiration at Multiple Sites. Journal of Neurochemistry, 2001, 72, 1617-1624.	2.1	140
88	Elevation of AKR7A2 (succinic semialdehyde reductase) in neurodegenerative disease. Brain Research, 2001, 916, 229-238.	1.1	56
89	Enhancement of Dopaminergic Neurotoxicity by the Mercapturate of Dopamine. Journal of Neurochemistry, 2000, 74, 970-978.	2.1	28
90	Congeners of Nα-acetyl-L-cysteine but not aminoguanidine act as neuroprotectants from the lipid peroxidation product 4-hydroxy-2-nonenal. Free Radical Biology and Medicine, 2000, 29, 1028-1036.	1.3	27

#	Article	IF	CITATIONS
91	DOPAMINE MERCAPTURATE CAN AUGMENT DOPAMINERGIC NEURODEGENERATION*. Drug Metabolism Reviews, 2000, 32, 363-376.	1.5	11
92	Endogenous catechol thioethers may be pro-oxidant or antioxidant. Free Radical Biology and Medicine, 1999, 27, 271-277.	1.3	32
93	High-Pressure Liquid Chromatography Quantitation of Cytochrome c Using 393 nm Detection. Analytical Biochemistry, 1999, 276, 166-170.	1.1	28
94	Methods of sympathetic degeneration and alteration. Journal of the Autonomic Nervous System, 1997, 62, 111-125.	1.9	47
95	Central noradrenergic lesioning using anti-DBH-saporin: anatomical findings. Brain Research, 1996, 740, 175-184.	1.1	127
96	Noradrenergic lesioning with an anti-dopamine \hat{l}^2 -hydroxylase immunotoxin. Brain Research, 1994, 666, 195-200.	1.1	51