Liudmila Larina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3223599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 1480.	30.8	150
2	Graphene–NiO nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells. Nanoscale, 2014, 6, 477-482.	5.6	103
3	Graphene–platinum nanohybrid as a robust and low-cost counter electrode for dye-sensitized solar cells. Nanoscale, 2013, 5, 12237.	5.6	76
4	Graphene-based nanohybrid materials as the counter electrode for highly efficient quantum-dot-sensitized solar cells. Carbon, 2015, 84, 383-389.	10.3	69
5	Facile synthesis of carbon dot-Au nanoraspberries and their application as high-performance counter electrodes in quantum dot-sensitized solar cells. Carbon, 2016, 96, 139-144.	10.3	63
6	Optimum strategy for designing PtCo alloy/reduced graphene oxide nanohybrid counter electrode for dye-sensitized solar cells. Carbon, 2016, 96, 229-236.	10.3	57
7	A facile synthesis of bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells. Journal of Power Sources, 2015, 274, 831-838.	7.8	56
8	Graphene-based RuO2 nanohybrid as a highly efficient catalyst for triiodide reduction in dye-sensitized solar cells. Carbon, 2015, 81, 710-719.	10.3	55
9	Optimum strategy for designing a graphene-based counter electrode for dye-sensitized solar cells. Carbon, 2014, 77, 980-992.	10.3	48
10	Evaluation of Pt-based alloy/graphene nanohybrid electrocatalysts for triiodide reduction in photovoltaics. Carbon, 2017, 116, 294-302.	10.3	47
11	Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface. Energy and Environmental Science, 2011, 4, 3487.	30.8	43
12	Development of new buffer layers for Cu(In,Ga)Se2 solar cells. Pure and Applied Chemistry, 2008, 80, 2091-2102.	1.9	38
13	Plasma Reduction of Nanostructured TiO ₂ Electrode to Improve Photovoltaic Efficiency of Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2014, 161, H896-H902.	2.9	33
14	Optimization of the PtFe alloy structure for application as an efficient counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2016, 211, 842-850.	5.2	32
15	AuNP/graphene nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells. Electrochimica Acta, 2015, 156, 138-146.	5.2	31
16	Robust FeOOH/BiVO ₄ /Cu(In, Ga)Se ₂ tandem structure for solar-powered biocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 8496-8502.	10.3	28
17	Effect of Nb Doping of TiO2 Electrode on Charge Transport in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2011, 158, B1281.	2.9	26
18	Wet Pretreatment-Induced Modification of Cu(In,Ga)Se ₂ /Cd-Free ZnTiO Buffer Interface. ACS Applied Materials & Interfaces, 2018, 10, 20920-20928.	8.0	26

LIUDMILA LARINA

#	Article	IF	CITATIONS
19	Ultrathin SnO2 layer for efficient carrier collection in dye-sensitized solar cells. Thin Solid Films, 2014, 556, 503-508.	1.8	24
20	Design of energy band alignment at the Zn1â^'xMgxO/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells. Physical Chemistry Chemical Physics, 2012, 14, 4789.	2.8	21
21	Optimum engineering of a PtSn alloys/reduced graphene oxide nanohybrid for a highly efficient counter electrode in dye-sensitized solar cells. Journal of Industrial and Engineering Chemistry, 2016, 36, 238-244.	5.8	21
22	Design of conduction band structure of TiO ₂ electrode using Nb doping for highly efficient dyeâ€sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20, 904-911.	8.1	19
23	Cd-free CIGS solar cells with buffer layer based on the In2S3 derivatives. Physical Chemistry Chemical Physics, 2013, 15, 9239.	2.8	19
24	Plasma-processed CoSn/RGO nanocomposite: A low-cost and sustainable counter electrode for dye-sensitized solar cells. Solar Energy, 2020, 201, 819-826.	6.1	19
25	Minimizing energy losses in perovskite solar cells using plasma-treated transparent conducting layers. Thin Solid Films, 2015, 593, 10-16.	1.8	18
26	Optimum alloying of bimetallic PtAu nanoparticles used as an efficient and robust counter electrode material of dye-sensitized solar cells. Journal of Alloys and Compounds, 2016, 682, 706-712.	5.5	18
27	Surface passivation and point defect control in Cu(In,Ga)Se ₂ films with a Na ₂ S post deposition treatment for higher than 19% CIGS cell performance. Sustainable Energy and Fuels, 2019, 3, 709-716.	4.9	17
28	Suppression of Charge Recombination in Dye-Sensitized Solar Cells Using the Plasma Treatment of Fluorine-Doped Tin Oxide Substrates. Journal of the Electrochemical Society, 2015, 162, H903-H909.	2.9	16
29	Multilayered PVDF-HFP Porous Separator via Phase Separation and Selective Solvent Etching for High Voltage Lithium-Ion Batteries. Membranes, 2021, 11, 41.	3.0	16
30	Fabrication of Cu(In,Ga)Se2 solar cell with ZnS/CdS double layer as an alternative buffer. Current Applied Physics, 2010, 10, S142-S145.	2.4	15
31	NiCoPt/graphene-dot nanosponge as a highly stable electrocatalyst for efficient hydrogen evolution reaction in acidic electrolyte. Journal of Alloys and Compounds, 2020, 849, 156651.	5.5	15
32	Growth and Characterization of an In-based Buffer Layer by CBD for Cu(In,Ga)Se[sub 2] Solar Cells. Journal of the Electrochemical Society, 2004, 151, C789.	2.9	13
33	Energy band alignment at the heterointerface between a nanostructured TiO ₂ layer and Au ₂₂ (SG) ₁₈ clusters: relevance to metal-cluster-sensitized solar cells. Nanoscale, 2021, 13, 175-184.	5.6	13
34	Rareâ€earth and Nb doping of TiO ₂ nanocrystalline mesoscopic layers for highâ€efficiency dyeâ€sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1801-1806.	1.8	12
35	Growth of Ultrathin Zn Compound Buffer Layer by a Chemical Bath Deposition for Cu(In,Ga)Se[sub 2] Solar Cells. Journal of the Electrochemical Society, 2009, 156, D469.	2.9	11
36	Reduction of point defects and Cu surface composition in Cu(In,Ga)Se 2 film by Se annealing with a NaF overlayer at intermediate temperatures. Current Applied Physics, 2017, 17, 820-828.	2.4	11

LIUDMILA LARINA

#	Article	IF	CITATIONS
37	Characterization of surface chemistry of PtFe bimetallic nanoparticles. Applied Surface Science, 2018, 457, 381-387.	6.1	11
38	TiO2/halide perovskite interface: The impact of surface state passivation on energy alignment and photovoltaic performance of perovskite solar cells. Applied Surface Science, 2020, 512, 145666.	6.1	11
39	Robust carbon-encapsulated Ni nanoparticles as high-performance electrocatalysts for the hydrogen evolution reaction in highly acidic media. Electrochimica Acta, 2021, 398, 139332.	5.2	11
40	Charge Transfer across a ZnOâ^•Electrolyte Interface Induced by Sub-Bandgap Illumination: Role of the Surface States. Journal of the Electrochemical Society, 2008, 155, H529.	2.9	9
41	Growth of a void-free Cu ₂ SnS ₃ thin film using a Cu/SnS ₂ precursor through an intermediate-temperature pre-annealing and sulfurization process. CrystEngComm, 2017, 19, 5764-5773.	2.6	9
42	High entropy alloy electrocatalyst synthesized using plasma ionic liquid reduction. Journal of Solid State Chemistry, 2022, 314, 123388.	2.9	9
43	Atomistic consideration of earth-abundant chalcogenide materials for photovoltaics: Kesterite and beyond. Journal of Materials Research, 2018, 33, 3986-3998.	2.6	7
44	An economically sustainable bifunctional Ni@C catalyst in a solar-to-hydrogen device employing a CIGS submodule. Journal of Materials Chemistry A, 2021, 9, 23828-23840.	10.3	7
45	Data on a highly stable electrocatalyst of NiCoPt/Graphene-dot nanosponge for efficient hydrogen evolution reaction. Data in Brief, 2020, 33, 106332.	1.0	4
46	Fabrication of CdTe solar cell using an Inx(OOH,S)y/CdS double layer as a heterojunction counterpart. Current Applied Physics, 2009, 9, 455-459.	2.4	3
47	Electron Paramagnetic Resonance Studies of Shallow Donors Behavior in Hydrogenated ZnO Films. ECS Transactions, 2010, 28, 161-167.	0.5	2
48	Surface Modification of Cu(in,Ga)Se ₂ Film with a Postâ€Deposition Treatment Using a KI Solution and Its Effect on Solar Cell Performance. Solar Rrl, 0, , 2200058.	5.8	2
49	Improvement of electron transport in DSSCs by using Nb-doped TiO <inf>2</inf> electrodes. , 2011, , .		1