Dmitri B Kirpotin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3222014/publications.pdf

Version: 2024-02-01

57	7,338	40	55
papers	citations	h-index	g-index
58	58	58	8080 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Antibody Targeting of Long-Circulating Lipidic Nanoparticles Does Not Increase Tumor Localization but Does Increase Internalization in Animal Models. Cancer Research, 2006, 66, 6732-6740.	0.9	1,009
2	CLINICAL DEVELOPMENT OF HISTONE DEACETYLASE INHIBITORS AS ANTICANCER AGENTS. Annual Review of Pharmacology and Toxicology, 2005, 45, 495-528.	9.4	554
3	Sterically Stabilized Anti-HER2 Immunoliposomes:  Design and Targeting to Human Breast Cancer Cells in Vitro. Biochemistry, 1997, 36, 66-75.	2.5	412
4	Epidermal Growth Factor Receptor–Targeted Immunoliposomes Significantly Enhance the Efficacy of Multiple Anticancer Drugs <i>In vivo</i> . Cancer Research, 2005, 65, 11631-11638.	0.9	365
5	Development of a Highly Active Nanoliposomal Irinotecan Using a Novel Intraliposomal Stabilization Strategy. Cancer Research, 2006, 66, 3271-3277.	0.9	305
6	Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials, 1993, 122, 374-378.	2.3	287
7	64Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clinical Cancer Research, 2017, 23, 4190-4202.	7.0	280
8	Targeted Tumor Cell Internalization and Imaging of Multifunctional Quantum Dot-Conjugated Immunoliposomes in Vitro and in Vivo. Nano Letters, 2008, 8, 2851-2857.	9.1	256
9	Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. Journal of Pharmaceutical Sciences, 2008, 97, 4696-4740.	3.3	237
10	Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Research, 2003, 63, 3154-61.	0.9	218
11	Distribution of Liposomes into Brain and Rat Brain Tumor Models by Convection-Enhanced Delivery Monitored with Magnetic Resonance Imaging. Cancer Research, 2004, 64, 2572-2579.	0.9	217
12	Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene) Tj ETQqO 0 0	rg B T8Ove	rlo als 410 Tf 50
13	Cationic Liposomes Coated with Polyethylene Glycol As Carriers for Oligonucleotides. Journal of Biological Chemistry, 1998, 273, 15621-15627.	3.4	183
14	Impact of Single-chain Fv Antibody Fragment Affinity on Nanoparticle Targeting of Epidermal Growth Factor Receptor-expressing Tumor Cells. Journal of Molecular Biology, 2007, 371, 934-947.	4.2	164
15	Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clinical Cancer Research, 2002, 8, 1172-81.	7.0	163
16	Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1591, 109-118.	4.1	156
17	Liposome-based approaches to overcome anticancer drug resistance. Drug Resistance Updates, 2003, 6, 271-279.	14.4	151
18	Novel Nanoliposomal CPT-11 Infused by Convection-Enhanced Delivery in Intracranial Tumors: Pharmacology and Efficacy. Cancer Research, 2006, 66, 2801-2806.	0.9	149

#	Article	IF	CITATIONS
19	Development of ligand-targeted liposomes for cancer therapy. Expert Opinion on Therapeutic Targets, 2004, 8, 335-353.	3.4	147
20	Extensive Distribution of Liposomes in Rodent Brains and Brain Tumors Following Convection-Enhanced Delivery. Journal of Neuro-Oncology, 2004, 68, 1-9.	2.9	128
21	Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Letters, 1997, 118, 153-160.	7.2	114
22	Development of a highly stable and targetable nanoliposomal formulation of topotecan. Journal of Controlled Release, 2010, 141, 13-21.	9.9	103
23	Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts. Neuro-Oncology, 2007, 9, 393-403.	1.2	102
24	Canine spontaneous glioma: A translational model system for convection-enhanced delivery. Neuro-Oncology, 2010, 12, 928-940.	1.2	93
25	Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model1. Neuro-Oncology, 2006, 8, 205-214.	1.2	91
26	Immunoliposomes for Cancer Treatment. Advances in Pharmacology, 1997, 40, 399-435.	2.0	90
27	Mapping Tumor Epitope Space by Direct Selection of Single-Chain Fv Antibody Libraries on Prostate Cancer Cells. Cancer Research, 2004, 64, 704-710.	0.9	90
28	Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging. Journal of Neurosurgery, 2008, 108, 989-998.	1.6	85
29	Preclinical Manufacture of an Anti-HER2 scFv-PEG-DSPE, Liposome-Inserting Conjugate. 1. Gram-Scale Production and Purification. Biotechnology Progress, 2008, 21, 205-220.	2.6	79
30	Anti-CD166 single chain antibody-mediated intracellular delivery of liposomal drugs to prostate cancer cells. Molecular Cancer Therapeutics, 2007, 6, 2737-2746.	4.1	76
31	Preclinical Manufacture of Anti-HER2 Liposome-Inserting, scFv-PEG-Lipid Conjugate. 2. Conjugate Micelle Identity, Purity, Stability, and Potency Analysis. Biotechnology Progress, 2008, 21, 221-232.	2.6	74
32	Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts. Neuro-Oncology, 2013, 15, 189-197.	1.2	69
33	Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemotherapy and Pharmacology, 2009, 64, 741-751.	2.3	65
34	Enhanced Pharmacodynamic and Antitumor Properties of a Histone Deacetylase Inhibitor Encapsulated in Liposomes or ErbB2-Targeted Immunoliposomes. Clinical Cancer Research, 2005, 11, 3392-3401.	7.0	55
35	Biological Effects of Anti-ErbB2 Single Chain Antibodies Selected for Internalizing Function. Biochemical and Biophysical Research Communications, 2001, 280, 274-279.	2.1	51
36	A gradient-loadable 64Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 155-165.	3.3	51

#	Article	IF	Citations
37	Targeted drug delivery to mesothelioma cells using functionally selected internalizing human single-chain antibodies. Molecular Cancer Therapeutics, 2008, 7, 569-578.	4.1	47
38	Companion Diagnostic 64Cu-Liposome Positron Emission Tomography Enables Characterization of Drug Delivery to Tumors and Predicts Response to Cancer Nanomedicines. Theranostics, 2018, 8, 2300-2312.	10.0	47
39	Improved Pharmacokinetics and Efficacy of a Highly Stable Nanoliposomal Vinorelbine. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 321-330.	2.5	45
40	Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Molecular Immunology, 2007, 44, 3777-3788.	2.2	44
41	Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models. Nature Biomedical Engineering, 2019, 3, 264-280.	22.5	40
42	A novel assay for monitoring internalization of nanocarrier coupled antibodies. BMC Immunology, 2006, 7, 24.	2.2	29
43	Targeting of Liposomes to Solid Tumors: The Case of Sterically Stabilized Anti-Her2 Immunoliposomes. Journal of Liposome Research, 1997, 7, 391-417.	3.3	28
44	Formulation optimization of an ephrin A2 targeted immunoliposome encapsulating reversibly modified taxane prodrugs. Journal of Controlled Release, 2019, 310, 47-57.	9.9	27
45	Improving the developability of an anti-EphA2 single-chain variable fragment for nanoparticle targeting. MAbs, 2017, 9, 58-67.	5.2	23
46	Investigation of intravenous delivery of nanoliposomal topotecan for activity against orthotopic glioblastoma xenografts. Neuro-Oncology, 2011, 13, 1288-1295.	1.2	22
47	Convection-enhanced delivery of targeted quantum dot–immunoliposome hybrid nanoparticles to intracranial brain tumor models. Nanomedicine, 2013, 8, 1913-1925.	3.3	22
48	Building and Characterizing Antibody-Targeted Lipidic Nanotherapeutics. Methods in Enzymology, 2012, 502, 139-166.	1.0	21
49	Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle. MAbs, 2015, 7, 42-52.	5.2	21
50	Targeting of Drugs to Solid Tumors Using Anti-Her2 Immunoliposomes. Journal of Liposome Research, 1998, 8, 425-442.	3.3	19
51	Pharmacokinetics, tumor accumulation and antitumor activity of nanoliposomal irinotecan following systemic treatment of intracranial tumors. Nanomedicine, 2014, 9, 2099-2108.	3.3	19
52	Magnetic targeting of a therapeutic antibody using magnetotropic microspheres of the interpolyelectrolyte coacervation complex. Journal of Magnetism and Magnetic Materials, 1993, 122, 354-359.	2.3	10
53	Convection-enhanced delivery of liposomal doxorubicin in intracranial brain tumor xenografts. Targeted Oncology, 2006, 1, 79-85.	3.6	10
54	Targeting EphA2 in Bladder Cancer Using a Novel Antibody-Directed Nanotherapeutic. Pharmaceutics, 2020, 12, 996.	4.5	6

#	Article	IF	CITATIONS
55	Targeting of sterically stabilized liposomes to cancers overexpressing HER2/neu proto-oncogene. , 1998, , 325-345.		3
56	Development of disulfide-stabilized Fabs for targeting of antibody-directed nanotherapeutics. MAbs, 2022, 14, .	5.2	2
57	Intraliposomal Trapping Agents for Improving In Vivo Liposomal Drug Formulation Stability. , 2006, , 149-168.		O