Grazia Lamanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3221805/publications.pdf

Version: 2024-02-01

55	738	17 h-index	24
papers	citations		g-index
61	61	61	387
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Towards a unified treatment of fully flashing sprays. International Journal of Multiphase Flow, 2014, 58, 168-184.	3.4	104
2	Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations. Journal of Fluid Mechanics, 2007, 572, 339-366.	3.4	46
3	A benchmark study for the crown-type splashing dynamics of one- and two-component droplet wall–film interactions. Experiments in Fluids, 2017, 58, 1.	2.4	32
4	Experimental determination of droplet size and density field in condensing flows. Experiments in Fluids, 2002, 32, 381-395.	2.4	31
5	Electrohydrodynamic simulation of electrically controlled droplet generation. International Journal of Heat and Fluid Flow, 2017, 64, 120-128.	2.4	27
6	Experimental and numerical investigation of phase separation due to multicomponent mixing at high-pressure conditions. Physical Review Fluids, 2019, 4, .	2. 5	27
7	Splashing characteristics of diesel exhaust fluid (AdBlue) droplets impacting on urea-water solution films. Experimental Thermal and Fluid Science, 2019, 102, 152-162.	2.7	26
8	On the Selection of Boundary Conditions for Droplet Evaporation and Condensation at high Pressure and Temperature Conditions from interfacial Transport Resistivities. International Journal of Heat and Mass Transfer, 2020, 151, 119450.	4.8	26
9	FLASHING BEHAVIOR OF ROCKET ENGINE PROPELLANTS. Atomization and Sprays, 2015, 25, 837-856.	0.8	25
10	Design of a double diaphragm shock tube for fluid disintegration studies. Review of Scientific Instruments, 2008, 79, 125106.	1.3	23
11	Temperature and velocity determination of shock-heated flows with non-resonant heterodyne laser-induced thermal acoustics. Applied Physics B: Lasers and Optics, 2015, 121, 235-248.	2.2	23
12	On the importance of non-equilibrium models for describing the coupling of heat and mass transfer at high pressure. International Communications in Heat and Mass Transfer, 2018, 98, 49-58.	5 . 6	23
13	Numerical and experimental analysis of flashing cryogenic nitrogen. International Journal of Multiphase Flow, 2020, 130, 103360.	3.4	22
14	Fluid injection with supercritical reservoir conditions: Overview on morphology and mixing. Journal of Supercritical Fluids, 2021, 169, 105097.	3.2	22
15	CLASSIFICATION OF IMPACT MORPHOLOGY AND SPLASHING/DEPOSITION LIMIT FOR N-HEXADECANE. Atomization and Sprays, 2016, 26, 983-1007.	0.8	22
16	Speed of sound measurements and mixing characterization of underexpanded fuel jets with supercritical reservoir condition using laser-induced thermal acoustics. Experiments in Fluids, 2016, 57, 1.	2.4	21
17	Measurement of species concentration and estimation of temperature in the wake of evaporating n-heptane droplets at trans-critical conditions. Proceedings of the Combustion Institute, 2017, 36, 2433-2440.	3.9	17
18	Two-phase disintegration of high-pressure retrograde fluid jets at near-critical injection temperature discharged into a subcritical pressure atmosphere. International Journal of Multiphase Flow, 2018, 107, 116-130.	3.4	17

#	Article	IF	Citations
19	Laboratory Experiments of High-Pressure Fluid Drops. , 2020, , 49-109.		15
20	A quantitative speed of sound database for multi-component jet mixing at high pressure. Fuel, 2018, 233, 918-925.	6.4	14
21	Influence of wetting behavior on the morphology of droplet impacts onto dry smooth surfaces. Physics of Fluids, 2021, 33, .	4.0	12
22	Mixing characterization of highly underexpanded fluid jets with real gas expansion. Experiments in Fluids, $2018, 59, 1.$	2.4	11
23	Droplet velocity and diameter distributions in flash boiling liquid nitrogen jets by means of phase Doppler diagnostics. Experiments in Fluids, 2020, 61, 1.	2.4	11
24	On the stability of stationary shock waves in nozzle flows with homogeneous condensation. Physics of Fluids, 2001, 13, 2706-2719.	4.0	10
25	Differential infrared thermography (DIT) in a flashing jet: a feasibility study. Quantitative InfraRed Thermography Journal, 2013, 10, 112-131.	4.2	9
26	Influence of liquid miscibility and wettability on the structures produced by drop–jet collisions. Journal of Fluid Mechanics, 2020, 885, .	3.4	8
27	On the crown rim expansion kinematics during droplet impact on wall-films. Experimental Thermal and Fluid Science, 2020, 118, 110168.	2.7	8
28	Miscibility and wettability: how interfacial tension influences droplet impact onto thin wall films. Journal of Fluid Mechanics, 2021, 908, .	3.4	8
29	Experimental investigation of isolated acetone droplets at ambient and near-critical conditions, injected in a nitrogen atmosphere. , 2013, , .		8
30	Generalized analysis of the deposition/splashing limit for one- and two-component droplet impacts upon thin films. , 0, , .		8
31	Disintegration Regimes Near the Critical Point. , 2012, , .		7
32	On the potential and challenges of laser-induced thermal acoustics for experimental investigation of macroscopic fluid phenomena. Experiments in Fluids, 2021, 62, 1.	2.4	7
33	Unpicking the interplay of turbulence, diffusion, and thermophysics in cryogenic jets at supercritical pressures. Physics of Fluids, 2021, 33, .	4.0	7
34	Single Acetone Droplets at Supercritical Pressure: Droplet Generation and Characterization of PLIFP. Zeitschrift Fur Physikalische Chemie, 2011, 225, 1417-1431.	2.8	6
35	Non-invasive, spatially averaged temperature measurements of falling acetone droplets in nitrogen atmosphere at elevated pressures and temperatures. Journal of Supercritical Fluids, 2020, 166, 105025.	3.2	6
36	Experimental and Numerical Investigation of Phase Separation due to Multi-Component Mixing at High-Pressure Conditions. , 0, , .		6

#	Article	IF	CITATIONS
37	Drop impact onto wetted walls: an unsteady analytical solution for modelling crown spreading. Journal of Fluid Mechanics, 2022, 938, .	3.4	6
38	Measurements of droplet vaporisation by means of light scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 261, 153-161.	4.7	4
39	Condensing nozzle flows: Ludwieg tube experiments and numerical/ theoretical modelling. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2001, 81, 569-572.	1.6	2
40	Shock Tube Study on Hydrocarbon Free Jets using High-Speed Shadowgraphy. , 2008, , .		2
41	High-pressure carbon dioxide–organic solvent mixing layers: Global equilibrium models and the transition to single phase mixing. Journal of Supercritical Fluids, 2021, 169, 105024.	3.2	2
42	Fluid disintegration studies in a specialized shock tube., 2011,,.		2
43	Experimental Investigation of Droplet Injections in the Vicinity of the Critical Point: A comparison of different model approaches., 0,,.		2
44	A New Perspective for the Characterization of Crown Rim Kinematics. Fluid Mechanics and Its Applications, 2020, , 163-175.	0.2	2
45	A Double-Diaphragm Shock Tube for Hydrocarbon Disintegration Studies. , 2006, , .		1
46	Combustion Experiments Performed Within the LAPCAT I Project - An Overview. , 2009, , .		1
47	Cryogenic Flashing Jets: A Review (Invited Paper). , 2016, , .		1
48	On the Importance of Kinetic Effects in the Modelling of Droplet Evaporation at High Pressure and Temperature Conditions. Fluid Mechanics and Its Applications, 2020, , 277-286.	0.2	1
49	Analytical Model for Crown Spreading During Drop Impact onto Wetted Walls: Effect of Liquids Viscosity on Momentum Transfer. Fluid Mechanics and Its Applications, 2020, , 177-190.	0.2	1
50	Comparative Study of Equilibrium and Nonequilibrium Evaporation Models for Vaporizing Droplet Arrays at High-Pressure. NATO Science for Peace and Security Series C: Environmental Security, 2007, , 445-455.	0.2	0
51	Measurement Technique and Verification of Accuracy for Particle Sizing by Low Angle Elastic Light Scattering. Zhongguo Jiguang/Chinese Journal of Lasers, 2013, 40, 0308004.	1.2	0
52	Modelling and Simulation of Electrically Controlled Droplet Dynamics. Mathematics in Industry, 2018, , 101-109.	0.3	0
53	Evaluation of Geometry-Dependent Spray Hole Individual Mass Flow Rates of Multi-Hole High-Pressure GDI-Injectors Utilizing a Novel Measurement Setup. , 0, , .		0
54	The Influence of Curvature on the Modelling of Droplet Evaporation at Different Scales. Fluid Mechanics and Its Applications, 2020, , 259-276.	0.2	0

#	Article	IF	CITATIONS
55	Celebration of Professor Bernhard Weigand on his 60th birthday. International Journal of Heat and Mass Transfer, 2022, 188, 122626.	4.8	0