Cleo Goyvaerts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3221719/publications.pdf

Version: 2024-02-01

394421 361022 1,259 38 19 citations h-index papers

35 g-index 40 40 40 1983 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tâ€cell subsets in the skin and their role in inflammatory skin disorders. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 827-842.	5.7	27
2	Novel 3D Lung Tumor Spheroids for Oncoimmunological Assays. Advanced NanoBiomed Research, 2022, 2, 2100124.	3.6	1
3	TNF-α-Secreting Lung Tumor-Infiltrated Monocytes Play a Pivotal Role During Anti-PD-L1 Immunotherapy. Frontiers in Immunology, 2022, 13, 811867.	4.8	11
4	Targeted Radionuclide Therapy with Low and High-Dose Lutetium-177–Labeled Single Domain Antibodies Induces Distinct Immune Signatures in a Mouse Melanoma Model. Molecular Cancer Therapeutics, 2022, 21, 1136-1148.	4.1	5
5	Inhibiting Histone and DNA Methylation Improves Cancer Vaccination in an Experimental Model of Melanoma. Frontiers in Immunology, 2022, 13 , .	4.8	2
6	Emerging applications of nanobodies in cancer therapy. International Review of Cell and Molecular Biology, 2022, , 143-199.	3.2	9
7	Single-Domain Antibody Nuclear Imaging Allows Noninvasive Quantification of LAG-3 Expression by Tumor-Infiltrating Leukocytes and Predicts Response of Immune Checkpoint Blockade. Journal of Nuclear Medicine, 2021, 62, 1638-1644.	5. O	26
8	TNFÎ \pm and Immune Checkpoint Inhibition: Friend or Foe for Lung Cancer?. International Journal of Molecular Sciences, 2021, 22, 8691.	4.1	17
9	Fractionated Radiation Severely Reduces the Number of CD8+ T Cells and Mature Antigen Presenting Cells Within Lung Tumors. International Journal of Radiation Oncology Biology Physics, 2021, 111, 272-283.	0.8	16
10	Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. Molecular Therapy - Methods and Clinical Development, 2021, 22, 172-182.	4.1	11
11	Plasma zinc status and hyperinflammatory syndrome in hospitalized COVID-19 patients: An observational study. International Immunopharmacology, 2021, 100, 108163.	3.8	9
12	Evaluation of single domain antibodies as nuclear tracers for imaging of the immune checkpoint receptor human lymphocyte activation gene-3 in cancer. EJNMMI Research, 2021, 11, 115.	2. 5	5
13	Transcutaneous Vagal Nerve Stimulation Alone or in Combination With Radiotherapy Stimulates Lung Tumor Infiltrating Lymphocytes But Fails to Suppress Tumor Growth. Frontiers in Immunology, 2021, 12, 772555.	4.8	4
14	Hepatocarcinoma Induces a Tumor Necrosis Factor-Dependent Kupffer Cell Death Pathway That Favors Its Proliferation Upon Partial Hepatectomy. Frontiers in Oncology, 2020, 10, 547013.	2.8	7
15	Targeting Neuropilin-1 with Nanobodies Reduces Colorectal Carcinoma Development. Cancers, 2020, 12, 3582.	3.7	23
16	Theranostics in immuno-oncology using nanobody derivatives. Theranostics, 2019, 9, 7772-7791.	10.0	83
17	Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use. Biomolecules, 2019, 9, 548.	4.0	43
18	Single-domain antibody fusion proteins can target and shuttle functional proteins into macrophage mannose receptor expressing macrophages. Journal of Controlled Release, 2019, 299, 107-120.	9.9	17

#	Article	IF	CITATIONS
19	The Journey of in vivo Virus Engineered Dendritic Cells From Bench to Bedside: A Bumpy Road. Frontiers in Immunology, 2018, 9, 2052.	4.8	18
20	Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Frontiers in Immunology, 2018, 9, 1977.	4.8	123
21	Towards a personalized iPSC-based vaccine. Nature Biomedical Engineering, 2018, 2, 277-278.	22.5	6
22	Antigen-presenting cell-targeted lentiviral vectors do not support the development of productive T-cell effector responses: implications for in vivo targeted vaccine delivery. Gene Therapy, 2017, 24, 370-375.	4. 5	11
23	Cancer-Associated Myeloid Regulatory Cells. Frontiers in Immunology, 2016, 7, 113.	4.8	63
24	Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death and Disease, 2016, 7, e2560-e2560.	6.3	22
25	Particle-mediated Intravenous Delivery of Antigen mRNA Results in Strong Antigen-specific T-cell Responses Despite the Induction of Type I Interferon. Molecular Therapy - Nucleic Acids, 2016, 5, e326.	5.1	75
26	Intratumoral Delivery of TriMix mRNA Results in T-cell Activation by Cross-Presenting Dendritic Cells. Cancer Immunology Research, 2016, 4, 146-156.	3.4	90
27	The transduction pattern of ILâ€12â€encoding lentiviral vectors shapes the immunological outcome. European Journal of Immunology, 2015, 45, 3351-3361.	2.9	14
28	Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines. Journal of Immunology Research, 2015, 2015, 1-18.	2.2	40
29	Targeting the tumor microenvironment to enhance antitumor immune responses. Oncotarget, 2015, 6, 1359-1381.	1.8	59
30	Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using <i>ex vivo </i> myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncolmmunology, 2014, 3, e945378.	4.6	37
31	Immunogenicity of targeted lentivectors. Oncotarget, 2014, 5, 704-715.	1.8	25
32	Immune modulation by genetic modification of dendritic cells with lentiviral vectors. Virus Research, 2013, 176, 1-15.	2.2	20
33	Targeting of Human Antigen-Presenting Cell Subsets. Journal of Virology, 2013, 87, 11304-11308.	3.4	31
34	Assessing T-cell responses in anticancer immunotherapy. Oncolmmunology, 2013, 2, e26148.	4.6	27
35	Lentiviral Vectors: A Versatile Tool to Fight Cancer. Current Molecular Medicine, 2013, 13, 602-625.	1.3	27
36	Preclinical Evaluation of TriMix and Antigen mRNA-Based Antitumor Therapy. Cancer Research, 2012, 72, 1661-1671.	0.9	168

#	Article	IF	CITATIONS
37	Development of the Nanobody display technology to target lentiviral vectors to antigen-presenting cells. Gene Therapy, 2012, 19, 1133-1140.	4.5	55
38	Proinflammatory Characteristics of SMAC/DIABLO-Induced Cell Death in Antitumor Therapy. Cancer Research, 2012, 72, 1342-1352.	0.9	32