Baoli Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3220663/publications.pdf

Version: 2024-02-01

136 papers	2,535 citations	28 h-index	254184 43 g-index
137	137	137	1899
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Quantitative Phase Retrieval Through Scattering Medium via Compressive Sensing. IEEE Photonics Journal, 2022, 14, 1-8.	2.0	2
2	Experimental demonstration of optical trapping and manipulation with multifunctional metasurface. Optics Letters, 2022, 47, 977.	3.3	21
3	Spirally rotating particles with structured beams generated by phase-shifted zone plates. Applied Optics, 2022, 61, 1268.	1.8	1
4	Deep-Learning-Based Rapid Imaging Through Scattering Media Beyond the Memory Effect. IEEE Photonics Technology Letters, 2022, 34, 295-298.	2.5	2
5	Tunable depth of focus with modified complex amplitude modulation of optical field. Applied Optics, 2022, 61, 3502-3509.	1.8	2
6	Rotating of metallic microparticles with an optimal radially polarized perfect optical vortex. Journal of Optics (United Kingdom), 2022, 24, 064003.	2.2	5
7	Background Noise Suppression of Optical Sectioning Structured Illumination Microscopy via Fourier Domain Reconstruction. Frontiers in Physics, 2022, 10, .	2.1	1
8	Fourier Ptychographic Microscopy via Alternating Direction Method of Multipliers. Cells, 2022, 11, 1512.	4.1	8
9	Identification and separation of chiral particles by focused circularly polarized vortex beams. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 1371.	1.5	2
10	Enatioselective Rotation of Chiral Particles by Azimuthally Polarized Beams. Advanced Photonics Research, 2022, 3, .	3.6	7
11	Superimposed Hermite–Gaussian-correlated Schell-model beam with multiple off-axis vortices. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 1385.	1.5	1
12	Generation and Conversion Dynamics of Dual Bessel Beams with a Photonic Spin-Dependent Dielectric Metasurface. Physical Review Applied, 2021, 15 , .	3.8	26
13	Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum. Nanoscale Advances, 2021, 3, 6897-6902.	4.6	12
14	Extended field of view of light-sheet fluorescence microscopy by scanning multiple focus-shifted Gaussian beam arrays. Optics Express, 2021, 29, 6158.	3.4	7
15	Rapid Image Reconstruction of Structured Illumination Microscopy Directly in the Spatial Domain. IEEE Photonics Journal, 2021, 13, 1-11.	2.0	21
16	Direct axial plane imaging of particle manipulation with nondiffracting Bessel beams. Applied Optics, 2021, 60, 2974.	1.8	9
17	Multi-color structured illumination microscopy for live cell imaging based on the enhanced image recombination transform algorithm. Biomedical Optics Express, 2021, 12, 3474.	2.9	9
18	High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	18

#	Article	IF	Citations
19	Off-axis optical levitation and transverse spinning of metallic microparticles. Photonics Research, 2021, 9, 2144.	7.0	5
20	Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography. Optics Letters, 2021, 46, 29.	3.3	26
21	Axial resolution enhancement for planar Airy beam light-sheet microscopy via the complementary beam subtraction method. Applied Optics, 2021, 60, 10239.	1.8	4
22	Dual-wavelength in-line digital holography with untrained deep neural networks. Photonics Research, 2021, 9, 2501.	7.0	20
23	Direct Observation of Axial Dynamics of Particle Manipulation With Weber Self-Accelerating Beams. Frontiers in Physics, 2021, 9, .	2.1	5
24	High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. Reports on Progress in Physics, 2020, 83, 096101.	20.1	76
25	3D Imaging Restoration of Spinning-Disk Confocal Microscopy Via Deep Learning. IEEE Photonics Technology Letters, 2020, 32, 1131-1134.	2.5	5
26	Deep Convolutional Neural Network Phase Unwrapping for Fringe Projection 3D Imaging. Sensors, 2020, 20, 3691.	3.8	27
27	Color full stokes polarization fringe projection 3D imaging. Optics and Lasers in Engineering, 2020, 130, 106088.	3.8	9
28	Spin momentum-dependent orbital motion. New Journal of Physics, 2020, 22, 053009.	2.9	9
29	Generation of controllable chiral optical fields by vector beams. Nanoscale, 2020, 12, 15453-15459.	5.6	11
30	Simultaneous optical trapping and imaging in the axial plane: a review of current progress. Reports on Progress in Physics, 2020, 83, 032401.	20.1	41
31	Compact optical module to generate arbitrary vector vortex beams. Applied Optics, 2020, 59, 8932.	1.8	13
32	Full-color optically-sectioned imaging by wide-field microscopy via deep-learning. Biomedical Optics Express, 2020, 11, 2619.	2.9	8
33	Azimuthally phase-shifted Fibonacci zone plate. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3557.	2.1	5
34	Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers. Optics Express, 2020, 28, 12729.	3.4	30
35	Polarization-dependent micro-structure fabrication with direct femtosecond laser writing on plastic polarizer films. Optics Letters, 2020, 45, 2588.	3.3	0
36	Hybrid multifocal structured illumination microscopy with enhanced lateral resolution and axial localization capability. Biomedical Optics Express, 2020, 11, 3058.	2.9	7

#	Article	IF	CITATIONS
37	Full-polarization wavefront shaping for imaging through scattering media. Applied Optics, 2020, 59, 5131.	1.8	4
38	Accelerating triangle-like singular beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 1965.	1.5	1
39	Axial resolution enhancement of lightâ€sheet microscopy by double scanning of Bessel beam and its complementary beam. Journal of Biophotonics, 2019, 12, e201800094.	2.3	27
40	Adaptive-window angular spectrum algorithm for near-field ptychography. Optics Communications, 2019, 430, 73-82.	2.1	14
41	Imaging Enhancement of Light-Sheet Fluorescence Microscopy via Deep Learning. IEEE Photonics Technology Letters, 2019, 31, 1803-1806.	2.5	17
42	Direct calculation of tightly focused field in an arbitrary plane. Optics Communications, 2019, 450, 329-334.	2.1	1
43	Quantitative phase imaging of cells in a flow cytometry arrangement utilizing Michelson interferometerâ€based offâ€axis digital holographic microscopy. Journal of Biophotonics, 2019, 12, e201900085.	2.3	39
44	Optical sorting of small chiral particles by tightly focused vector beams. Physical Review A, 2019, 99, .	2.5	42
45	Vignetting effect in Fourier ptychographic microscopy. Optics and Lasers in Engineering, 2019, 120, 40-48.	3.8	36
46	Compressed Blind Deconvolution and Denoising for Complementary Beam Subtraction Light-Sheet Fluorescence Microscopy. IEEE Transactions on Biomedical Engineering, 2019, 66, 2979-2989.	4.2	7
47	Large-scale 3D imaging of insects with natural color. Optics Express, 2019, 27, 4845.	3.4	20
48	Multi-view object topography measurement with optical sectioning structured illumination microscopy. Applied Optics, 2019, 58, 6288.	1.8	13
49	Single-shot Fourier ptychographic microscopy via annular monochrome LED array. , 2019, , .		7
50	Enantioselective optical trapping of chiral nanoparticles by tightly focused vector beams. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2099.	2.1	15
51	Real-time optical manipulation of particles through turbid media. Optics Express, 2019, 27, 4858.	3.4	22
52	Three-dimensional space optimization for near-field ptychography. Optics Express, 2019, 27, 5433.	3.4	22
53	Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams. Optics Express, 2019, 27, 37975.	3.4	8
54	Generation of a double-ring perfect optical vortex by the Fourier transform of azimuthally polarized Bessel beams. Optics Letters, 2019, 44, 1504.	3.3	37

#	Article	IF	Citations
55	Linear space-variant optical cryptosystem via Fourier ptychography. Optics Letters, 2019, 44, 2032.	3.3	31
56	Robust contrast-transfer-function phase retrieval via flexible deep learning networks. Optics Letters, 2019, 44, 5141.	3.3	14
57	Linear space-variant optical cryptosystem via Fourier ptychography. , 2019, , .		O
58	Rapid wide-field imaging through scattering media by digital holographic wavefront correction. Applied Optics, 2019, 58, 2845.	1.8	4
59	Robust contrast-transfer-function phase retrieval via flexible deep learning networks: publisher's note. Optics Letters, 2019, 44, 5561.	3.3	1
60	Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams. Optics Express, 2019, 27, 37975.	3.4	7
61	Spinning of particles in optical double-vortex beams. Journal of Optics (United Kingdom), 2018, 20, 025401.	2.2	13
62	Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Applied Optics, 2018, 57, 79.	1.8	47
63	Optical thickness measurement with single-shot dual-wavelength in-line digital holography. Optics Letters, 2018, 43, 4469.	3.3	24
64	Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams. Physical Review A, 2018, 97, .	2.5	55
65	Shaping the on-axis intensity profile of generalized Bessel beams by iterative optimization methods. Journal of Optics (United Kingdom), 2018, 20, 085603.	2.2	16
66	Aberration correction in holographic optical tweezers using a high-order optical vortex. Applied Optics, 2018, 57, 3618.	1.8	31
67	Aberration correction in holographic optical tweezers using a high-order optical vortex: publisher's note. Applied Optics, 2018, 57, 4857.	1.8	1
68	Subwavelength resolution Fourier ptychography with hemispherical digital condensers. Optics Express, 2018, 26, 23119.	3.4	71
69	Aberration correction method based on double-helix point spread function. Journal of Biomedical Optics, 2018, 24, 1.	2.6	6
70	Subwavelength resolution Fourier ptychography with hemispherical digital condensers. , 2018, , .		0
71	Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media. Journal of Optics (United Kingdom), 2017, 19, 105602.	2.2	17
72	Transverse spinning of particles in highly focused vector vortex beams. Physical Review A, 2017, 95, .	2.5	52

#	Article	IF	Citations
73	Three-dimensional characterization of tightly focused fields for various polarization incident beams. Review of Scientific Instruments, 2017, 88, 063106.	1.3	5
74	Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function. Biomedical Optics Express, 2017, 8, 5493.	2.9	33
75	System calibration method for Fourier ptychographic microscopy. Journal of Biomedical Optics, 2017, 22, 1.	2.6	67
76	Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations. Optics Express, 2016, 24, 20604.	3.4	41
77	Visualization of the 3D structures of small organisms via LED-SIM. Frontiers in Zoology, 2016, 13, 26.	2.0	4
78	Experimental demonstration of 3D accelerating beam arrays. Applied Optics, 2016, 55, 3090.	2.1	8
79	Image recombination transform algorithm for superresolution structured illumination microscopy. Journal of Biomedical Optics, 2016, 21, 096009.	2.6	41
80	Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 1341.	1.5	28
81	Single-beam phase retrieval with partially coherent light illumination. Journal of Optics (United) Tj ETQq $1\ 1\ 0.78$	4314.rgBT 2.2	/Oyerlock 10
82	Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 311-315.	2.1	29
83	Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging. PLoS ONE, 2016, 11, e0168885.	2.5	13
84	Full-color structured illumination optical sectioning microscopy. Scientific Reports, 2015, 5, 14513.	3.3	34
85	Accelerating nondiffracting beams. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 983-987.	2.1	25
86	Threshold automatic selection hybrid phase unwrapping algorithm for digital holographic microscopy. Journal of Modern Optics, 2015, 62, 108-113.	1.3	1
87	Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing. Biomedical Optics Express, 2015, 6, 4353.	2.9	29
88	Double-Exposure Optical Sectioning Structured Illumination Microscopy Based on Hilbert Transform Reconstruction. PLoS ONE, 2015, 10, e0120892.	2.5	27
89	Intrinsic optical torque of cylindrical vector beams on Rayleigh absorptive spherical particles. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1710.	1.5	34
90	Polarization-sensitive diffractive optical elements fabricated in BR films with femtosecond laser. Applied Physics B: Lasers and Optics, 2014, 115, 365-369.	2.2	4

#	Article	IF	Citations
91	Structured illumination microscopy for super-resolution and optical sectioning. Science Bulletin, 2014, 59, 1291-1307.	1.7	44
92	Generation of three-dimensional optical structures by dynamic holograms displayed on a twisted nematic liquid crystal display. Applied Physics B: Lasers and Optics, 2013, 110, 531-537.	2.2	17
93	DMD-based LED-illumination Super-resolution and optical sectioning microscopy. Scientific Reports, 2013, 3, 1116.	3.3	218
94	Femtosecond laser-induced permanent anisotropy in bacteriorhodopsin films and applications in optical data storage. Journal of Modern Optics, 2013, 60, 309-314.	1.3	10
95	Kinetics of polarization gratings assisted with polarized violet light in bacteriorhodopsin films. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 1885.	1.5	1
96	Off-axis digital holographic microscopy with LED illumination based on polarization filtering. Applied Optics, 2013, 52, 8233.	1.8	33
97	Long-Distance Axial Trapping with Focused Annular Laser Beams. PLoS ONE, 2013, 8, e57984.	2.5	22
98	All-optical logic gates based on photoinduced anisotropy of bacteriorhodopsin film. Journal of Modern Optics, 2012, 59, 636-642.	1.3	4
99	Dual-wavelength slightly off-axis digital holographic microscopy. Applied Optics, 2012, 51, 191.	1.8	48
100	Fast computation for generating CGH of a 3D object by employing connections between layers. Journal of Modern Optics, 2012, 59, 1406-1409.	1.3	2
101	Comment on "Optical Orbital Angular Momentum from the Curl of Polarization― Physical Review Letters, 2011, 106, 189301; author reply 189302.	7.8	9
102	Improvement of the performance of the twisted-nematic liquid-crystal display as a phase modulator. Applied Optics, 2011, 50, 2588.	2.1	4
103	Optical trapping with cylindrical vector beams. , 2011, , .		0
104	Polarization holographic optical recording based on a new photochromic diarylethene compound. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 234-240.	0.4	5
105	Two-photon absorption of photochromic diarylethene and its application to rewritable holographic recording. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 221-225.	0.4	3
106	Prediction of optical modulation properties of twisted-nematic liquid-crystal display by improved measurement of Jones matrix. Journal of Applied Physics, 2010, 107, 073107.	2.5	14
107	Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy. Optics Letters, 2010, 35, 712.	3.3	51
108	Fast calculation technique for scattering in T-matrix method. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5243-5245.	2.1	2

#	Article	IF	CITATIONS
109	Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film. Optics Communications, 2008, 281, 2380-2384.	2.1	2
110	Kinetics of photoinduced anisotropy in bacteriorhodopsin film under two pumping beams. Applied Optics, 2008, 47, 3760.	2.1	2
111	Effect of reconstruction beam polarization on the kinetics of anisotropic gratings in bacteriorhodopsin. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 685.	1.5	4
112	Influence of polarization orientation of violet light on the diffraction efficiency of bacteriorhodopsin. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 1274.	1.5	1
113	Accurate description of a radially polarized Gaussian beam. Physical Review A, 2008, 77, .	2.5	20
114	Application of bacteriorhodopsin film for polarization phase-shifting interferometry. Journal of Modern Optics, 2008, 55, 2215-2222.	1.3	1
115	Phase reconstruction from three interferograms based on integral of phase gradient. Journal of Modern Optics, 2008, 55, 2233-2242.	1.3	4
116	Multifunctional darkfield microscopy using an axicon. Journal of Biomedical Optics, 2008, 13, 044024.	2.6	9
117	Transverse trapping forces of focused Gaussian beam on ellipsoidal particles. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1596.	2.1	24
118	Bleaching kinetics of indoly-benzylfulgimide in PMMA. Physica Status Solidi (B): Basic Research, 2007, 244, 1363-1375.	1.5	2
119	Absorbance kinetics of dye-doped systems with photochemical first order kinetics. Physica Status Solidi (B): Basic Research, 2007, 244, 2138-2150.	1.5	7
120	Photochromic diarylethene for polarization holographic optical recording. Materials Letters, 2007, 61, 855-859.	2.6	83
121	Radiation forces of a highly focused radially polarized beam on spherical particles. Physical Review A, 2007, 76, .	2.5	86
122	Structuring by multi-beam interference using symmetric pyramids. Optics Express, 2006, 14, 5803.	3.4	37
123	Optical Properties and Applications of Photochromic Fulgides. Molecular Crystals and Liquid Crystals, 2005, 430, 211-219.	0.9	21
124	Polarization holographic high-density optical data storage in bacteriorhodopsin film. Applied Optics, 2005, 44, 7344.	2.1	41
125	Polarization multiplexed write-once–read-many optical data storage in bacteriorhodopsin films. Optics Letters, 2005, 30, 3060.	3.3	35
126	Properties and Applications of Bacteriorhodopsin-films as Dynamic Holographic Recording Media., 2005, , .		0

#	Article	IF	CITATION
127	Characteristics of beam profile of Gaussian beam passing through an axicon. Optics Communications, 2004, 239, 367-372.	2.1	30
128	Photochromic kinetic spectra and intermediates of BR-D96N. Science in China Series G: Physics, Mechanics and Astronomy, 2003, 46, 1 -7.	0.2	3
129	Experimental investigation of parallel optical data storage using pyrrylfulgide photochromic material. Science Bulletin, 2003, 48, 1548-1550.	1.7	3
130	Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N. Optics Communications, 2003, 218, 125-130.	2.1	14
131	Characteristics and mechanisms of the two types of photoelectric differential response of bacteriorhodopsin-based photocell. Biosensors and Bioelectronics, 2003, 19, 283-287.	10.1	7
132	Kinetics of picosecond laser pulse induced charge separation and proton transfer in bacteriorhodopsin. Journal of Biomedical Optics, 2003, 8, 48.	2.6	2
133	Mechanisms of Pulse Response and Differential Response of Bacteriorhodopsin and Their Relations¶. Photochemistry and Photobiology, 2002, 76, 545-548.	2.5	0
134	Mechanisms of Pulse Response and Differential Response of Bacteriorhodopsin and Their Relations¶. Photochemistry and Photobiology, 2002, 76, 545.	2.5	2
135	Analyses and proofs of multiexponential process of bacteriorhodopsin photoelectric response. Journal of Applied Physics, 2001, 89, 795-797.	2.5	5
136	Laser-induced bacteriorhodopsin LB films' fast photoelectric dynamics. Science in China Series A: Mathematics, 1997, 40, 761-766.	0.5	0