List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3218169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct observation of catch bonds involving cell-adhesion molecules. Nature, 2003, 423, 190-193.	13.7	880
2	Demonstration of catch bonds between an integrin and its ligand. Journal of Cell Biology, 2009, 185, 1275-1284.	2.3	600
3	Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nature Cell Biology, 2016, 18, 540-548.	4.6	582
4	Accumulation of Dynamic Catch Bonds between TCR and Agonist Peptide-MHC Triggers T Cell Signaling. Cell, 2014, 157, 357-368.	13.5	487
5	The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature, 2010, 464, 932-936.	13.7	451
6	Measuring Two-Dimensional Receptor-Ligand Binding Kinetics by Micropipette. Biophysical Journal, 1998, 75, 1553-1572.	0.2	397
7	Cell Mechanics: Mechanical Response, Cell Adhesion, and Molecular Deformation. Annual Review of Biomedical Engineering, 2000, 2, 189-226.	5.7	365
8	Rolling Cell Adhesion. Annual Review of Cell and Developmental Biology, 2010, 26, 363-396.	4.0	318
9	Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11281-11286.	3.3	300
10	A nonsynonymous functional variant in integrin-αM (encoded by ITGAM) is associated with systemic lupus erythematosus. Nature Genetics, 2008, 40, 152-154.	9.4	277
11	DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nature Communications, 2014, 5, 5167.	5.8	258
12	Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. Journal of Clinical Investigation, 2008, 118, 3195-207.	3.9	257
13	Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science, 2017, 355, 1320-1324.	6.0	232
14	T Cell Receptor Signaling Is Limited by Docking Geometry to Peptide-Major Histocompatibility Complex. Immunity, 2011, 35, 681-693.	6.6	229
15	Low Force Decelerates L-selectin Dissociation from P-selectin Glycoprotein Ligand-1 and Endoglycan. Journal of Biological Chemistry, 2004, 279, 2291-2298.	1.6	222
16	Catch bonds govern adhesion through L-selectin at threshold shear. Journal of Cell Biology, 2004, 166, 913-923.	2.3	202
17	Two-Stage Cooperative T Cell Receptor-Peptide Major Histocompatibility Complex-CD8 Trimolecular Interactions Amplify Antigen Discrimination. Immunity, 2011, 34, 13-23.	6.6	172
18	Receptor-mediated cell mechanosensing. Molecular Biology of the Cell, 2017, 28, 3134-3155.	0.9	168

#	Article	IF	CITATIONS
19	Kinetics and mechanics of cell adhesion. Journal of Biomechanics, 2000, 33, 23-33.	0.9	162
20	Forcing Switch from Short- to Intermediate- and Long-lived States of the αA Domain Generates LFA-1/ICAM-1 Catch Bonds. Journal of Biological Chemistry, 2010, 285, 35967-35978.	1.6	161
21	High prevalence of low affinity peptide–MHC II tetramer–negative effectors during polyclonal CD4+ T cell responses. Journal of Experimental Medicine, 2011, 208, 81-90.	4.2	150
22	Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow. Journal of Cell Biology, 2002, 158, 787-799.	2.3	141
23	Determining Force Dependence of Two-Dimensional Receptor-Ligand Binding Affinity by Centrifugation. Biophysical Journal, 1998, 74, 492-513.	0.2	139
24	Identification of Self Through Two-Dimensional Chemistry and Synapses. Annual Review of Cell and Developmental Biology, 2001, 17, 133-157.	4.0	139
25	Flow-enhanced adhesion regulated by a selectin interdomain hinge. Journal of Cell Biology, 2006, 174, 1107-1117.	2.3	136
26	Cyclic Mechanical Reinforcement of Integrin–Ligand Interactions. Molecular Cell, 2013, 49, 1060-1068.	4.5	131
27	Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. Journal of Cell Biology, 2012, 199, 497-512.	2.3	130
28	Mechanosensing through immunoreceptors. Nature Immunology, 2019, 20, 1269-1278.	7.0	118
29	A Structure-Based Sliding-Rebinding Mechanism for Catch Bonds. Biophysical Journal, 2007, 92, 1471-1485.	0.2	113
30	Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. Journal of Clinical Investigation, 2016, 126, 2191-2204.	3.9	113
31	Force History Dependence of Receptor-Ligand Dissociation. Biophysical Journal, 2005, 88, 1458-1466.	0.2	112
32	A TCR mechanotransduction signaling loop induces negative selection in the thymus. Nature Immunology, 2018, 19, 1379-1390.	7.0	112
33	Monitoring Receptor-Ligand Interactions between Surfaces by Thermal Fluctuations. Biophysical Journal, 2008, 94, 694-701.	0.2	110
34	Force-induced cleavage of single VWFA1A2A3 tridomains by ADAMTS-13. Blood, 2010, 115, 370-378.	0.6	100
35	Mechanisms for Flow-Enhanced Cell Adhesion. Annals of Biomedical Engineering, 2008, 36, 604-621.	1.3	99
36	Quantifying the Effects of Molecular Orientation and Length on Two-dimensional Receptor-Ligand Binding Kinetics. Journal of Biological Chemistry, 2004, 279, 44915-44923.	1.6	98

#	Article	IF	CITATIONS
37	Programmable Multivalent DNA-Origami Tension Probes for Reporting Cellular Traction Forces. Nano Letters, 2018, 18, 4803-4811.	4.5	97
38	Mechano-regulation of Peptide-MHC Class I Conformations Determines TCR Antigen Recognition. Molecular Cell, 2019, 73, 1015-1027.e7.	4.5	95
39	An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation. Nature Materials, 2019, 18, 760-769.	13.3	94
40	Mechanical regulation of Tâ€cell functions. Immunological Reviews, 2013, 256, 160-176.	2.8	93
41	Force-Regulated In Situ TCR–Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells. Journal of Immunology, 2015, 195, 3557-3564.	0.4	92
42	The N-terminal Flanking Region of the A1 Domain Regulates the Force-dependent Binding of von Willebrand Factor to Platelet Glycoprotein Ibα. Journal of Biological Chemistry, 2013, 288, 32289-32301.	1.6	91
43	Kinetics of MHC-CD8 Interaction at the T Cell Membrane. Journal of Immunology, 2007, 179, 7653-7662.	0.4	90
44	Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nature Communications, 2014, 5, 4886.	5.8	85
45	Measuring Receptor–Ligand Binding Kinetics on Cell Surfaces: From Adhesion Frequency to Thermal Fluctuation Methods. Cellular and Molecular Bioengineering, 2008, 1, 276-288.	1.0	79
46	Measuring Receptor/Ligand Interaction at the Single-Bond Level: Experimental and Interpretative Issues. Annals of Biomedical Engineering, 2002, 30, 305-314.	1.3	78
47	Ligand Binding and Phagocytosis by CD16 (Fc γ Receptor III) Isoforms. Journal of Biological Chemistry, 1995, 270, 25762-25770.	1.6	77
48	Measuring Diffusion and Binding Kinetics by Contact Area FRAP. Biophysical Journal, 2008, 95, 920-930.	0.2	76
49	Apolipoprotein A-IV binds αIIbβ3 integrin and inhibits thrombosis. Nature Communications, 2018, 9, 3608.	5.8	75
50	A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. , 1999, 17, 423-429.		69
51	Measuring Molecular Elasticity by Atomic Force Microscope Cantilever Fluctuations. Biophysical Journal, 2006, 90, 681-692.	0.2	69
52	Dynamic control of β1 integrin adhesion by the plexinD1-sema3E axis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 379-384.	3.3	69
53	Quantifying the Impact of Membrane Microtopology on Effective Two-dimensional Affinity. Journal of Biological Chemistry, 2001, 276, 13283-13288.	1.6	68
54	Transport Governs Flow-Enhanced Cell Tethering through L-Selectin at Threshold Shear. Biophysical Journal, 2007, 92, 330-342.	0.2	68

#	Article	IF	CITATIONS
55	Molecular Dynamics Simulations of Forced Unbending of Integrin αVβ3. PLoS Computational Biology, 2011, 7, e1001086.	1.5	68
56	Two-dimensional Kinetics Regulation of αLβ2-ICAM-1 Interaction by Conformational Changes of the αL-Inserted Domain. Journal of Biological Chemistry, 2005, 280, 42207-42218.	1.6	67
57	Diffusion of Microspheres in Shear Flow Near a Wall: Use to Measure Binding Rates between Attached Molecules. Biophysical Journal, 2001, 81, 25-42.	0.2	66
58	Insights from <i>in situ</i> analysis of TCR– <scp>pMHC</scp> recognition: response of an interaction network. Immunological Reviews, 2013, 251, 49-64.	2.8	66
59	Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5022-5027.	3.3	66
60	Force regulated conformational change of integrin $\hat{I}\pm V\hat{I}^2$ 3. Matrix Biology, 2017, 60-61, 70-85.	1.5	66
61	Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. ELife, 2016, 5, .	2.8	66
62	Probabilistic Modeling of Shear-Induced Formation and Breakage of Doublets Cross-Linked by Receptor-Ligand Bonds. Biophysical Journal, 1999, 76, 1112-1128.	0.2	62
63	Cell-specific, activation-dependent regulation of neutrophil CD32A ligand-binding function. Blood, 2000, 95, 1069-1077.	0.6	62
64	Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nature Communications, 2014, 5, 5624.	5.8	62
65	Pre-TCR ligand binding impacts thymocyte development before αβTCR expression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8373-8378.	3.3	62
66	A Lupus-Associated Mac-1 Variant Has Defects in Integrin Allostery and Interaction with Ligands under Force. Cell Reports, 2015, 10, 1655-1664.	2.9	62
67	Accumulation of Serial Forces on TCR and CD8 Frequently Applied by Agonist Antigenic Peptides Embedded in MHC Molecules Triggers Calcium in T Cells. Journal of Immunology, 2014, 193, 68-76.	0.4	60
68	Kinetic Measurements of Cell Surface E-Selectin/Carbohydrate Ligand Interactions. Annals of Biomedical Engineering, 2001, 29, 935-946.	1.3	59
69	Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion. Experimental Cell Research, 2016, 349, 85-94.	1.2	59
70	The Membrane Anchor Influences Ligand Binding Two-dimensional Kinetic Rates and Three-dimensional Affinity of Fcl3RIII (CD16). Journal of Biological Chemistry, 2000, 275, 10235-10246.	1.6	57
71	2 <scp>D TCR</scp> –p <scp>MHC</scp> – <scp>CD</scp> 8 kinetics determines <scp>T</scp> â€cell responses in a selfâ€antigenâ€specific <scp>TCR</scp> system. European Journal of Immunology, 2014, 44, 239-250.	1.6	57
72	Molecular Force Spectroscopy on Cells. Annual Review of Physical Chemistry, 2015, 66, 427-451.	4.8	57

#	Article	IF	CITATIONS
73	Catch bonds: physical models, structural bases, biological function and rheological relevance. Biorheology, 2005, 42, 443-62.	1.2	56
74	Concurrent and Independent Binding of FcÎ ³ Receptors IIa and IIIb to Surface-Bound IgG. Biophysical Journal, 2000, 79, 1867-1875.	0.2	52
75	Two Stage Cadherin Kinetics Require Multiple Extracellular Domains but Not the Cytoplasmic Region. Journal of Biological Chemistry, 2008, 283, 1848-1856.	1.6	52
76	Shear-induced integrin signaling in platelet phosphatidylserine exposure, microvesicle release, and coagulation. Blood, 2018, 132, 533-543.	0.6	52
77	Affinity and Kinetic Analysis of FcÎ ³ Receptor Illa (CD16a) Binding to IgG Ligands. Journal of Biological Chemistry, 2007, 282, 6210-6221.	1.6	51
78	Memory in receptor-ligand-mediated cell adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18037-18042.	3.3	49
79	Replacing a Lectin Domain Residue in L-selectin Enhances Binding to P-selectin Glycoprotein Ligand-1 but Not to 6-Sulfo-sialyl Lewis x. Journal of Biological Chemistry, 2008, 283, 11493-11500.	1.6	49
80	Triphasic Force Dependence of E-Selectin/Ligand Dissociation Governs Cell Rolling under Flow. Biophysical Journal, 2010, 99, 1166-1174.	0.2	49
81	The integrin PSI domain has an endogenous thiol isomerase function and is a novel target for antiplatelet therapy. Blood, 2017, 129, 1840-1854.	0.6	48
82	Neutrophil FcÎ ³ RIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. Journal of Clinical Investigation, 2017, 127, 3810-3826.	3.9	48
83	Regulation of Catch Bonds by Rate of Force Application. Journal of Biological Chemistry, 2011, 286, 32749-32761.	1.6	46
84	Von Willebrand factor-A1 domain binds platelet glycoprotein Ibα in multiple states with distinctive force-dependent dissociation kinetics. Thrombosis Research, 2015, 136, 606-612.	0.8	46
85	Cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nature Communications, 2018, 9, 5058.	5.8	43
86	Dynamics of the Interaction of Human IgG Subtype Immune Complexes with Cells Expressing R and H Allelic Forms of a Low-Affinity Fcl ³ Receptor CD32A. Journal of Immunology, 2009, 183, 8216-8224.	0.4	41
87	PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Nature Communications, 2021, 12, 2746.	5.8	41
88	Concurrent Binding to Multiple Ligands: Kinetic Rates of CD16b for Membrane-Bound IgG1 and IgG2. Biophysical Journal, 2000, 79, 1858-1866.	0.2	39
89	Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell. Journal of Visualized Experiments, 2015, , e52975.	0.2	39
90	Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets. Nature Communications, 2018, 9, 1087.	5.8	39

#	Article	lF	CITATIONS
91	Changes in Thermodynamic Stability of von Willebrand Factor Differentially Affect the Force-Dependent Binding to Platelet GPIbα. Biophysical Journal, 2009, 97, 618-627.	0.2	38
92	T cell triggering: insights from 2D kinetics analysis of molecular interactions. Physical Biology, 2012, 9, 045005.	0.8	38
93	Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function. Cellular and Molecular Bioengineering, 2010, 3, 91-105.	1.0	37
94	A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally Varying Chemical Signals to Probe Single-Cell Response Dynamics. Analytical Chemistry, 2014, 86, 10138-10147.	3.2	37
95	The cellular environment regulates in situ kinetics of Tâ€cell receptor interaction with peptide major histocompatibility complex. European Journal of Immunology, 2015, 45, 2099-2110.	1.6	37
96	Flow induces loop-to-Â-hairpin transition on the Â-switch of platelet glycoprotein IbÂ. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13847-13852.	3.3	36
97	Low 2-Dimensional CD4 T Cell Receptor Affinity for Myelin Sets in Motion Delayed Response Kinetics. PLoS ONE, 2012, 7, e32562.	1.1	36
98	Flow-Induced Structural Transition in the β-Switch Region of Glycoprotein Ib. Biophysical Journal, 2008, 95, 1303-1313.	0.2	35
99	Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood, 2013, 122, 1695-1706.	0.6	35
100	T cell antigen recognition at the cell membrane. Molecular Immunology, 2012, 52, 155-164.	1.0	34
101	Force-Induced Unfolding of Leucine-Rich Repeats of Glycoprotein Ibα Strengthens Ligand Interaction. Biophysical Journal, 2015, 109, 1781-1784.	0.2	34
102	Modeling Concurrent Binding of Multiple Molecular Species in Cell Adhesion. Biophysical Journal, 2000, 79, 1850-1857.	0.2	33
103	The Mechanism of VWF-Mediated Platelet GPlbα Binding. Biophysical Journal, 2010, 99, 1192-1201.	0.2	33
104	Dual Biomembrane Force Probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. Scientific Reports, 2017, 7, 14185.	1.6	33
105	A Coupled Diffusion-Kinetics Model for Analysis of Contact-Area FRAP Experiment. Biophysical Journal, 2008, 95, 910-919.	0.2	32
106	Insights into T Cell Recognition of Antigen: Significance of Two-Dimensional Kinetic Parameters. Frontiers in Immunology, 2012, 3, 86.	2.2	31
107	Dynamic bonds and their roles in mechanosensing. Current Opinion in Chemical Biology, 2019, 53, 88-97.	2.8	31
108	L-selectin mechanochemistry restricts neutrophil priming in vivo. Nature Communications, 2017, 8, 15196.	5.8	30

#	Article	IF	CITATIONS
109	Rheological aspects of red blood cell aggregation. Biorheology, 1990, 27, 309-325.	1.2	28
110	Mechanochemitry: A Molecular Biomechanics View of Mechanosensing. Annals of Biomedical Engineering, 2014, 42, 388-404.	1.3	28
111	Glycan Bound to the Selectin Low Affinity State Engages Glu-88 to Stabilize the High Affinity State under Force. Journal of Biological Chemistry, 2017, 292, 2510-2518.	1.6	28
112	Analysis of Competition Binding between Soluble and Membrane-Bound Ligands for Cell Surface Receptors. Biophysical Journal, 1999, 77, 3394-3406.	0.2	27
113	Quantifying the effects of contact duration, loading rate, and approach velocity on P-selectin–PSGL-1 interactions using AFM. Polymer, 2006, 47, 2539-2547.	1.8	27
114	Local Cellular and Cytokine Cues in the Spleen Regulate In Situ T Cell Receptor Affinity, Function, and Fate of CD8 + T Cells. Immunity, 2016, 45, 988-998.	6.6	25
115	Biophysical basis underlying dynamic Lck activation visualized by ZapLck FRET biosensor. Science Advances, 2019, 5, eaau2001.	4.7	25
116	Catch bonds: physical models and biological functions. MCB Molecular and Cellular Biomechanics, 2005, 2, 91-104.	0.3	23
117	A catch to integrin activation. Nature Immunology, 2007, 8, 1035-1037.	7.0	22
118	MHC Variant Peptide-Mediated Anergy of Encephalitogenic T Cells Requires SHP-1. Journal of Immunology, 2008, 181, 6843-6849.	0.4	21
119	Molecular Stiffness of Selectins. Journal of Biological Chemistry, 2011, 286, 9567-9576.	1.6	21
120	Flow-Enhanced Stability of Rolling Adhesion through E-Selectin. Biophysical Journal, 2016, 111, 686-699.	0.2	21
121	Structural Basis and Kinetics of Force-Induced Conformational Changes of an αA Domain-Containing Integrin. PLoS ONE, 2011, 6, e27946.	1.1	20
122	P-Selectin Glycoprotein Ligand-1 Forms Dimeric Interactions with E-Selectin but Monomeric Interactions with L-Selectin on Cell Surfaces. PLoS ONE, 2013, 8, e57202.	1.1	20
123	The Differential Effect of Endothelial Cell Factors on In Vitro Motility of Malignant and Non-malignant Cells. Annals of Biomedical Engineering, 2008, 36, 958-969.	1.3	19
124	Molecular Dynamics Simulated Unfolding of von Willebrand Factor A Domains by Force. Cellular and Molecular Bioengineering, 2009, 2, 75-86.	1.0	19
125	Mechanotransduction in T Cell Development, Differentiation and Function. Cells, 2020, 9, 364.	1.8	19
126	Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets. Journal of Immunology, 2016, 197, 644-654.	0.4	18

#	Article	IF	CITATIONS
127	Transport Regulation of Two-Dimensional Receptor-Ligand Association. Biophysical Journal, 2015, 108, 1773-1784.	0.2	17
128	Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level. Journal of Cell Science, 2019, 132, .	1.2	17
129	In situ and in silico kinetic analyses of programmed cell death-1 (PD-1) receptor, programmed cell death ligands, and B7-1 protein interaction network. Journal of Biological Chemistry, 2017, 292, 6799-6809.	1.6	16
130	T cells like a firm molecular handshake. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4335-4336.	3.3	15
131	A FRET-Based Biosensor for Imaging SYK Activities in Living Cells. Cellular and Molecular Bioengineering, 2011, 4, 670-677.	1.0	15
132	Regulatory and T Effector Cells Have Overlapping Low to High Ranges in TCR Affinities for Self during Demyelinating Disease. Journal of Immunology, 2015, 195, 4162-4170.	0.4	15
133	Distinct roles of ICOS and CD40L in human T-B cell adhesion and antibody production. Cellular Immunology, 2021, 368, 104420.	1.4	15
134	Imaging Spatiotemporal Activities of ZAP-70 in Live T Cells Using a FRET-Based Biosensor. Annals of Biomedical Engineering, 2016, 44, 3510-3521.	1.3	14
135	Regulation of actin catch-slip bonds with a RhoA-formin module. Scientific Reports, 2016, 6, 35058.	1.6	14
136	Benchmarks of Biomembrane Force Probe Spring Constant Models. Biophysical Journal, 2017, 113, 2842-2845.	0.2	14
137	Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Advanced Healthcare Materials, 2021, 10, e2100102.	3.9	14
138	A thermodynamic and biomechanical theory of cell adhesion Part I: General formulism. Journal of Theoretical Biology, 1991, 150, 27-50.	0.8	13
139	Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM. European Biophysics Journal, 2010, 39, 1219-1227.	1.2	13
140	Tyrosine Replacement of PSGL-1 Reduces Association Kinetics with P- and L-Selectin on the Cell Membrane. Biophysical Journal, 2012, 103, 777-785.	0.2	13
141	Effects of anchor structure and glycosylation of FcÎ ³ receptor III on ligand binding affinity. Molecular Biology of the Cell, 2016, 27, 3449-3458.	0.9	13
142	Two-Dimensional Analysis of Cross-Junctional Molecular Interaction by Force Probes. Methods in Molecular Biology, 2017, 1584, 231-258.	0.4	12
143	Binary Time Series Modeling With Application to Adhesion Frequency Experiments. Journal of the American Statistical Association, 2008, 103, 1248-1259.	1.8	11
144	Adhesion Frequency Assay for In Situ Kinetics Analysis of Cross-Junctional Molecular Interactions at the Cell-Cell Interface. Journal of Visualized Experiments, 2011, , e3519.	0.2	11

#	Article	IF	CITATIONS
145	A Generalized Gaussian Process Model for Computer Experiments With Binary Time Series. Journal of the American Statistical Association, 2020, 115, 945-956.	1.8	11
146	Domain-specific mechanical modulation of VWF–ADAMTS13 interaction. Molecular Biology of the Cell, 2019, 30, 1920-1929.	0.9	10
147	Calibration for Computer Experiments With Binary Responses and Application to Cell Adhesion Study. Journal of the American Statistical Association, 2020, 115, 1664-1674.	1.8	10
148	Fast Force Loading Disrupts Molecular Binding Stability in Human and Mouse Cell Adhesions. MCB Molecular and Cellular Biomechanics, 2019, 16, 211-223.	0.3	10
149	Thermo-Mechanical Responses of a Surface-Coupled AFM Cantilever. Journal of Biomechanical Engineering, 2005, 127, 1208-1215.	0.6	9
150	Probabilistic Modeling of Rosette Formation. Biophysical Journal, 2006, 91, 352-363.	0.2	9
151	Bending rigidities of cell surface molecules P-selectin and PSGL-1. Journal of Biomechanics, 2009, 42, 303-307.	0.9	9
152	Hidden Markov Models With Applications in Cell Adhesion Experiments. Journal of the American Statistical Association, 2013, 108, 1469-1479.	1.8	8
153	A model for cyclic mechanical reinforcement. Scientific Reports, 2016, 6, 35954.	1.6	8
154	Recombinant CD16A-Ig forms a homodimer and cross-blocks the ligand binding functions of neutrophil and monocyte Fcl ³ receptors. Molecular Immunology, 2002, 38, 527-538.	1.0	7
155	The kinetics of E-selectin- and P-selectin-induced intermediate activation of integrin αLβ2 on neutrophils. Journal of Cell Science, 2021, 134, .	1.2	6
156	Signaling mechanisms of the platelet glycoprotein Ib-IX complex. Platelets, 2022, 33, 823-832.	1.1	6
157	Cyclic Mechanical Reinforcement of Integrin–Ligand Interactions. Molecular Cell, 2013, 49, 1176.	4.5	5
158	Single-molecule investigations of T-cell activation. Current Opinion in Biomedical Engineering, 2019, 12, 102-110.	1.8	5
159	Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell Reports, 2021, 35, 109142.	2.9	4
160	Simulated Thermal Unfolding of the von Willebrand Factor A Domains. Cellular and Molecular Bioengineering, 2010, 3, 117-127.	1.0	3
161	A Model for Single-Substrate Trimolecular Enzymatic Kinetics. Biophysical Journal, 2010, 98, 1957-1965.	0.2	3
162	Conformational Transition of Glycoprotein Ibα Mutants in Flow Molecular Dynamics Simulation. Cellular and Molecular Bioengineering, 2011, 4, 495-504.	1.0	3

#	Article	IF	CITATIONS
163	Mechanochemical coupling of formin-induced actin interaction at the level of single molecular complex. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1509-1521.	1.4	2
164	Catch Bonds of Integrin/Ligand Interactions. , 2012, , 77-96.		2
165	Immune-mediated alopecias and their mechanobiological aspects. Cells and Development, 2022, 170, 203793.	0.7	2
166	Surface roughness and molecular orientation strongly influence the forward but not the reverse rates of cell-bound receptor-ligand binding. , 0, , .		1
167	Integrin Dependence of Calu-1 Cell Motility on Endothelial Extracellular Matrix Proteins. Annals of Biomedical Engineering, 2008, 36, 970-979.	1.3	1
168	Chapter 7 Biophysical Regulation of Selectin–Ligand Interactions Under Flow. Current Topics in Membranes, 2009, 64, 195-220.	0.5	1
169	An HMM-based algorithm for evaluating rates of receptor-ligand binding kinetics from thermal fluctuation data. Bioinformatics, 2013, 29, 1511-1518.	1.8	1
170	From cellular to molecular mechanobiology. APL Bioengineering, 2020, 4, 010902.	3.3	1
171	A Centrifugation Method for Measurement of Two-Dimensional Binding Characteristics of Receptor-Ligand Interaction. Drugs and the Pharmaceutical Sciences, 1999, , 261-298.	0.1	1
172	The differential effect of endothelial cell factors on in vitro motility of metastatic and non metastatic cells. , 0, , .		0
173	The kinetics and mechanics of cell adhesion molecules. , 0, , .		0
174	A Micropipet Aspiration System to Measure the Kinetics of Selectin/Ligand Interactions. International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3, .	0.4	0
175	Dynamics of surface receptor interactions required for an immune response. , 0, , .		0
176	The Sliding–Rebinding Mechanism for Catch Bonds [*] . Japanese Journal of Applied Physics, 2007, 46, 5528.	0.8	0
177	The Roles of Membrane Rafts in CD32A-Mediated Phagocytosis. Nature Precedings, 2007, , .	0.1	0
178	Platelet receptor-mediated mechanosensing and thrombosis. , 2018, , 285-304.		0
179	Glycoprotein Ibα Forms Catch Bonds with von Willebrand Factor A1 Domain but Not with Mutant A1 Domains Exhibiting Properties of Type 2B von Willebrand Disease Blood, 2007, 110, 293-293.	0.6	0
180	Sliding-Rebinding Mechanism Governs Glycoprotein Ib/von Willebrand Factor Catch Bonds Blood, 2007, 110, 3723-3723.	0.6	0

#	Article	IF	CITATIONS
181	Single-Molecule Measurements of Force-Induced Cleavage of VWF A1A2A3-Tridomain by ADAMTS13. Blood, 2008, 112, 3936-3936.	0.6	0
182	Single-Molecule Recognition: Extracting Information from Individual Binding Events and Their Correlation. , 2009, , 591-610.		0
183	The Study of CPIb-VWF Mediated Early-Stage Platelet Activation Triggering On a Single Cell. Blood, 2012, 120, 1069-1069.	0.6	0
184	Force-Induced Cooperative Unfolding of Two Distinctive Domains in a Single Gpibalpha Molecule. Blood, 2015, 126, 3449-3449.	0.6	0
185	Identification and Characterization of Integrin alphallbbeta3 Intermediate Affinity State Induced By Gpibalpha Mechanotransduction. Blood, 2015, 126, 237-237.	0.6	0