Fernando Langa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3217417/publications.pdf

Version: 2024-02-01

469 papers

11,531 citations

³⁸⁷⁴² 50 h-index

72 g-index

474 all docs

474 docs citations

474 times ranked

10326 citing authors

#	Article	IF	CITATIONS
1	New wide-bandgap $Da\in A$ polymer based on pyrrolo[3,4- <i>b</i>) dithieno[2,3- <i>f</i> :3 $a\in A$,2 $a\in A$,2i- <i>h</i>) quinoxalindione and thiazole functionalized benzo[1,2- <i>b</i>) b+(1,5- <i)b< i="">) color cells with over 16% efficiency. Sustainable Energy and Fuels, 2022, 6, 682-692.</i)b<>	4.9	1
2	Noncovalent Conformational Locks Enabling Efficient Nonfullerene Acceptors. Solar Rrl, 2022, 6, 2100768.	5.8	13
3	Truxene π-Expanded BODIPY Star-Shaped Molecules as Acceptors for Non-Fullerene Solar Cells with over 13% Efficiency. ACS Applied Energy Materials, 2022, 5, 2279-2289.	5.1	23
4	New Medium Bandgap Donor Dâ€A ₁ â€Dâ€A ₂ Type Copolymers Based on Anthra[1,2â€0 4,3â€b":6,7â€êâ€] Trithiopheneâ€8,12â€dione Groups for Highâ€Efficient Nonâ€Fullerene Polymer Solar Cells Macromolecular Rapid Communications, 2022, 43, e2100839.		9
5	Efficient ternary bulk heterojunction organic solar cells using a low-cost nonfullerene acceptor. Journal of Materials Chemistry C, 2022, 10, 4372-4382.	5.5	5
6	Gold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells. ACS Applied Materials & Solar Cell	8.0	11
7	Novel Pyrrolo [3,4â€b] Dithieno [3, 2â€f:2″,3″â€h] Quinoxalineâ€8,10 (9H)â€Dione Based Wide Bandgap Co Copolymers for Bulk Heterojunction Polymer Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200060.		4
8	Efficient Medium Bandgap Electron Acceptor Based on Diketopyrrolopyrrole and Furan for Efficient Ternary Organic Solar Cells. ACS Applied Materials & Enterfaces, 2022, , .	8.0	7
9	Synthesis of Dâ€A copolymers based on thiadiazole and thiazolothiazole acceptor units and their applications in ternary polymer solar cells. Journal of Polymer Science, 2022, 60, 2086-2099.	3.8	6
10	New wide band gap π-conjugated copolymers based on anthra[1,2-b: 4,3-b': 6,7-c''] trithiophene-8,12-dione for high performance non-fullerene polymer solar cells with an efficiency of 15.07 %. Polymer, 2022, 251, 124892.	3.8	6
11	Efficient Ternary Polymer Solar Cells Employing Well Matched Medium Band Gap and Narrow Band Gap Nonfullerene Acceptors. ACS Applied Energy Materials, 2022, 5, 7813-7821.	5.1	5
12	Bulk Heterojunction Solar Cells: Porphyrins, Dpps and Bodipys As Building Blocks for Efficient Donor Materials. ECS Meeting Abstracts, 2022, MA2022-01, 2484-2484.	0.0	0
13	Molecular Engineering of Low-Bandgap Porphyrins for Highly Efficient Organic Solarcells. ECS Meeting Abstracts, 2022, MA2022-01, 981-981.	0.0	O
14	Reducing Energy Loss in Organic Solar Cells by Changing the Central Metal in Metalloporphyrins. ChemSusChem, 2021, 14, 3494-3501.	6.8	5
15	Energy-level modulation of coumarin-based molecular donors for efficient all small molecule fullerene-free organic solar cells. Journal of Materials Chemistry A, 2021, 9, 1563-1573.	10.3	18
16	Ternary Polymer Solar Cells Using Two Polymers P1 and P3 with Similar Chemical Structures and Nonfullerene Acceptor Attained Power Conversion Efficiency Over 15.5% with Low Energy Loss of $0.55 \hat{a} \in \mathbb{Z}$. Energy Technology, 2021, 9, 2000926.	3.8	2
17	New Random Terpolymers Based on Bis(4,5-didodecylthiophen-2-yl)-[1,2,5]thiadiazolo[3,4-i]dithieno[3,2-a:2',3'-c]phenazine with Variable Absorption Spectrum as Promising Materials for Organic Solar Cells. Doklady Physical Chemistry, 2021, 496, 1-7.	0.9	1
18	A ternary organic solar cell with 15.6% efficiency containing a new DPP-based accentor Journal of	5.5	17

#	Article	IF	CITATIONS
19	Fullerene/Non-fullerene Alloy for High-Performance All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Distriction (2011), 13, 6461-6469.	8.0	17
20	Efficient Ternary Polymer solar cells based ternary active layer consisting of conjugated polymers and non-fullerene acceptors with power conversion efficiency approaching near to 15.5%. Solar Energy, 2021, 216, 217-224.	6.1	15
21	Ternary Polymer Solar Cells with High Open Circuit Voltage containing Fullerene and New Thieno[3',2',6,7][1]Benzothieno[3,2â€b]Thieno[3,2â€g][1]Benzothiopheneâ€based Nonâ€fullerene Small Mole Acceptor. Energy Technology, 2021, 9, 2001100.	cu ½ e8	6
22	Highly Efficient (>15%) Organic Solar Cells Based on Porphyrins. ECS Meeting Abstracts, 2021, MA2021-01, 770-770.	0.0	0
23	Highly Efficient (15.08%) All-Small-Molecule Ternary Solar Cells Constructed with a Porphyrin as a Donor and Two Acceptors. ACS Applied Energy Materials, 2021, 4, 4498-4506.	5.1	18
24	(Invited) Heteroatom Functionalization of N- and B-Doped Graphene. ECS Meeting Abstracts, 2021, MA2021-01, 625-625.	0.0	0
25	Efficient Ternary Organic Solar Cells (>14%) Enabled By Non-Fullerene Acceptors. ECS Meeting Abstracts, 2021, MA2021-01, 691-691.	0.0	0
26	New Dithiazole Side Chain Benzodithiophene Containing D–A Copolymers for Highly Efficient Nonfullerene Solar Cells. Macromolecular Chemistry and Physics, 2021, 222, 2100053.	2.2	6
27	Influence of the dipole moment on the photovoltaic performance of polymer solar cells employing non-fullerene small molecule acceptor. Solar Energy, 2021, 221, 393-401.	6.1	13
28	Self-Assembly-Directed Organization of a Fullerene–Bisporphyrin into Supramolecular Giant Donut Structures for Excited-State Charge Stabilization. Journal of the American Chemical Society, 2021, 143, 11199-11208.	13.7	6
29	Highâ€Performance Fullerene Free Polymer Solar Cells Based on New Thiazole â€Functionalized Benzo[1,2â€b:4,5â€b′]dithiophene Dâ€A Copolymer Donors. ChemistrySelect, 2021, 6, 7025-7036.	1.5	1
30	Incorporation of a Guaiacolâ€Based Small Molecule Guest Donor Enables Efficient Nonfullerene Acceptorâ€Based Ternary Organic Solar Cells. Solar Rrl, 2021, 5, 2100402.	5.8	8
31	High-efficiency fullerene free ternary organic solar cells based with two small molecules as donor. Optical Materials, 2021, 118, 111217.	3.6	2
32	Fullerene-Free All-Small-Molecule Ternary Organic Solar Cells with Two Compatible Fullerene-Free Acceptors and a Coumarin Donor Enabling a Power Conversion Efficiency of 14.5%. ACS Applied Energy Materials, 2021, 4, 11537-11544.	5.1	7
33	Binary and Ternary Polymer Solar Cells Based on a Wide Bandgap Dâ€A Copolymer Donor and Two Nonfullerene Acceptors with Complementary Absorption Spectral. ChemSusChem, 2021, 14, 4731-4740.	6.8	3
34	Ternary polymer solar cells based on wide bandgap and narrow bandgap non-fullerene acceptors with an efficiency of 16.40 % and a low energy loss of 0.53ÂeV. Materials Today Energy, 2021, 21, 100843.	4.7	4
35	Performance analysis of TiO2 based dye sensitized solar cell prepared by screen printing and doctor blade deposition techniques. Solar Energy, 2021, 226, 9-19.	6.1	26
36	New BODIPY derivatives with triarylamine and truxene substituents as donors for organic bulk heterojunction photovoltaic cells. Solar Energy, 2021, 227, 354-364.	6.1	12

#	Article	IF	CITATIONS
37	Prediction of non-radiative voltage losses in organic solar cells using machine learning. Solar Energy, 2021, 228, 175-186.	6.1	13
38	Efficient ternary polymer solar cell using wide bandgap conjugated polymer donor with two nonâ€fullerene small molecule acceptors enabled power conversion efficiency of 16% with low energy loss of 0.47 eV. Nano Select, 2021, 2, 1326-1335.	3.7	2
39	Enhanced electronic communication through a conjugated bridge in a porphyrin–fullerene donor–acceptor couple. Journal of Materials Chemistry C, 2021, 9, 10889-10898.	5.5	3
40	Effect of Mesogenic Side Groups on the Redox, Photophysical, and Solar Cell Properties of Diketopyrrolopyrrole <i>-trans</i> -bis(diphosphine)diethynylplatinum(II) Polymers. ACS Applied Polymer Materials, 2021, 3, 1087-1096.	4.4	6
41	Semitransparent organic solar cells: from molecular design to structure–performance relationships. Journal of Materials Chemistry C, 2021, 10, 13-43.	5.5	25
42	Ternary Organic Solar Cell with a Nearâ€Infrared Absorbing Selenophene–Diketopyrrolopyrroleâ€Based Nonfullerene Acceptor and an Efficiency above 10%. Solar Rrl, 2020, 4, 1900471.	5.8	21
43	Synthesis and Photovoltaic Investigation of 8,10-Bis(2-octyldodecyl)-8,10-dihydro-9 <i>H</i> naphtho[2,3- <i>d</i>) Imidazol-9-one Based Conjugated Polymers Using a Nonfullerene Acceptor. ACS Applied Energy Materials, 2020, 3, 495-505.	5.1	10
44	A bis(diketopyrrolopyrrole) dimer-containing ligand in platinum(<scp>ii</scp>) polyyne oligomers exhibiting ultrafast photoinduced electron transfer with PCBM and solar cell properties. Journal of Materials Chemistry C, 2020, 8, 2363-2380.	5 . 5	7
45	New Conjugated Polymers Based on Dithieno[2,3â€e:3′,2′â€g]Isoindoleâ€₹,9(8H)â€Dione Derivatives for Applications in Nonfullerene Polymer Solar Cells. Solar Rrl, 2020, 4, 1900475.	5.8	7
46	Indole-based A–DA′D–A type acceptor-based organic solar cells achieve efficiency over 15 % with low energy loss. Sustainable Energy and Fuels, 2020, 4, 6203-6211.	4.9	8
47	Polymer solar cell based on ternary active layer consists of medium bandgap polymer and two non-fullerene acceptors. Solar Energy, 2020, 207, 1427-1433.	6.1	4
48	Panchromatic Triple Organic Semiconductor Heterojunctions for Efficient Solar Cells. ACS Applied Energy Materials, 2020, 3, 12506-12516.	5.1	4
49	Synthesis and electronic properties of pyridine end-capped cyclopentadithiophene-vinylene oligomers. RSC Advances, 2020, 10, 41264-41271.	3.6	4
50	Enhancement of photovoltaic efficiency through fine adjustment of indaceneâ€based nonâ€fullerene acceptor by minimal chlorination for polymer solar cells. Nano Select, 2020, 1, 320-333.	3.7	11
51	Impacts of a second acceptor on the energy loss, blend morphology and carrier dynamics in non-fullerene ternary polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 11727-11734.	5. 5	5
52	Ternary Allâ€Smallâ€Molecule Solar Cells with Two Smallâ€Molecule Donors and Y6 Nonfullerene Acceptor with a Power Conversion Efficiency over Above 14% Processed from a Nonhalogenated Solvent. Solar Rrl, 2020, 4, 2000460.	5.8	13
53	New Highâ∈Bandgap 8,10â∈Dihydroâ∈9 H â∈Bistieno[2â∈2,3â∈2:7.8;3â∈3,2â∈3:5.6]Naphtho[2,3â∈d] Imidazoleá Donorâ∈"Acceptor Copolymers for Nonfullerene Polymer Solar Cells. Energy Technology, 2020, 8, 2000611.	â€9â€One 3.8	eâ€Based 2
54	A–DAâ€2D–A Nonfullerene Acceptor Obtained by Fine-Tuning Side Chains on Pyrroles Enables PBDB-T-Based Organic Solar Cells with over 14% Efficiency. ACS Applied Energy Materials, 2020, 3, 11981-11991.	5.1	8

#	Article	IF	CITATIONS
55	Ternary Allâ€Smallâ€Molecule Solar Cells with Two Smallâ€Molecule Donors and Y6 Nonfullerene Acceptor with a Power Conversion Efficiency over Above 14% Processed from a Nonhalogenated Solvent. Solar Rrl, 2020, 4, 2070115.	5.8	O
56	Synthesis and Optical and Electrochemical Properties of Novel Random Terpolymers Based on Diketopyrrolopyrrole and Benzodithiazole/Quinoxaline Units for Polymer Solar Cells. Doklady Chemistry, 2020, 490, 6-10.	0.9	0
57	Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications. Applied Physics Letters, 2020, 116 , .	3.3	34
58	Carbazole-based green and blue-BODIPY dyads and triads as donors for bulk heterojunction organic solar cells. Dalton Transactions, 2020, 49, 5606-5617.	3.3	34
59	Cardanol- and Guaiacol-Sourced Solution-Processable Green Small Molecule-Based Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 5891-5902.	6.7	14
60	Highly efficient ternary polymer solar cell with two non-fullerene acceptors. Solar Energy, 2020, 199, 530-537.	6.1	8
61	The influence of the terminal acceptor and oligomer length on the photovoltaic properties of A–D–A small molecule donors. Journal of Materials Chemistry C, 2020, 8, 4763-4770.	5.5	15
62	Synthesis and Photovoltaic Properties of New Conjugated Dâ€A Polymers Based on the Same Fluoroâ€Benzothiadiazole Acceptor Unit and Different Donor Units. ChemistrySelect, 2020, 5, 853-863.	1.5	6
63	Triplet photosensitizer-nanotube conjugates: synthesis, characterization and photochemistry of charge stabilizing, palladium porphyrin/carbon nanotube conjugates. Nanoscale, 2020, 12, 9890-9898.	5.6	10
64	Synthesis and Characterization of Wideâ∈Bandgap Conjugated Polymers Consisting of Same Electron Donor and Different Electronâ∈Deficient Units and Their Application for Nonfullerene Polymer Solar Cells. Macromolecular Chemistry and Physics, 2020, 221, 2000030.	2.2	8
65	(Invited) Heteroatom Functionalization of N- and B-Doped Graphene. ECS Meeting Abstracts, 2020, MA2020-01, 777-777.	0.0	0
66	Improving the Efficient of Porphyrin-Based Organic Solar Cell. ECS Meeting Abstracts, 2020, MA2020-01, 904-904.	0.0	0
67	New Donor–Acceptor Random Terpolymers with Wide Absorption Spectra of 300–1000 nm for Photovoltaic Applications. Doklady Physical Chemistry, 2020, 495, 196-200.	0.9	1
68	Tuning of structural and optical properties of Au nanoparticles in amorphous-carbon. Physica Scripta, 2020, 95, 105002.	2.5	1
69	Self-Assembly Directed Organization of Fullerene-Bisporphyrins into Supramolecular Donut Structures for Excited State Charge Stabilization. ECS Meeting Abstracts, 2020, MA2020-02, 1086-1086.	0.0	0
70	[All]â€ <i>S</i> , <i>S</i> â€dioxide Oligoâ€Thienylenevinylenes: Synthesis and Structural/Electronic Shapes from Their Molecular Force Fields. Chemistry - A European Journal, 2019, 25, 464-468.	3.3	1
71	Cycloaddition of Nitrile Oxides to Graphene: a Theoretical and Experimental Approach. Chemistry - A European Journal, 2019, 25, 14644-14650.	3.3	9
72	A bacteriochlorin-diketopyrrolopyrrole triad as a donor for solution-processed bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2019, 7, 9655-9664.	5.5	5

#	Article	IF	CITATIONS
73	Modulating charge carrier density and mobility in doped graphene by covalent functionalization. Chemical Communications, 2019, 55, 9999-10002.	4.1	7
74	Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. Nanoscale, 2019, 11, 14978-14992.	5.6	20
75	Occurrence of excited state charge separation in a N-doped graphene–perylenediimide hybrid formed <i>via</i> â€~click' chemistry. Nanoscale Advances, 2019, 1, 4009-4015.	4.6	4
76	NIR absorbing <i>ortho</i> -ï∈-extended perylene bisimide as a promising material for bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2019, 7, 3012-3017.	10.3	5
77	Thermally induced plasmonic resonance of Cu nanoparticles in fullerene C70 matrix. Vacuum, 2019, 159, 423-429.	3.5	5
78	Near-IR Absorbing D–A–D Zn-Porphyrin-Based Small-Molecule Donors for Organic Solar Cells with Low-Voltage Loss. ACS Applied Materials & Low-Voltage Loss Account & Loss Account & Low-Voltage Loss Account & Loss Account	8.0	27
79	Conjugated random terpolymers based on benzodithiophene, diketopyrrolopyrrole, and 8,10â€bis(thiophenâ€2â€yl)â€2,5â€di(nonadecanâ€3â€yl)bis[1,3]thiazolo[4,5â€f:5′,4′â€∙h]thieno[3,4â Efficient Polymer Solar Cell. Journal of Polymer Science Part A, 2019, 57, 1478-1485.	i €•b₂<u>¦</u>g uinc	oxatine for
80	Evolution of SPR in 120ÂMeV silver ion irradiated Cu (18%) C60 nanocomposites thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 8301-8311.	2.2	2
81	Increase in efficiency on using selenophene instead of thiophene in π-bridges for D-π-DPP-π-D organic solar cells. Journal of Materials Chemistry A, 2019, 7, 11886-11894.	10.3	29
82	Random D1–A1–D1–A2 terpolymers based on diketopyrrolopyrrole and benzothiadiazolequinoxaline (BTQx) derivatives for high-performance polymer solar cells. New Journal of Chemistry, 2019, 43, 5325-5334.	2.8	9
83	Butterfly architecture of NIR Aza-BODIPY small molecules decorated with phenothiazine or phenoxazine. Chemical Communications, 2019, 55, 12535-12538.	4.1	22
84	Phenothiazine-based small molecules for bulk heterojunction organic solar cells; variation of side-chain polarity and length of conjugated system. Organic Electronics, 2019, 65, 232-242.	2.6	19
85	An all-small-molecule organic solar cell derived from naphthalimide for solution-processed high-efficiency nonfullerene acceptors. Journal of Materials Chemistry C, 2019, 7, 709-717.	5.5	15
86	New indolo carbazole-based non-fullerene n-type semiconductors for organic solar cell applications. Journal of Materials Chemistry C, 2019, 7, 543-552.	5 . 5	26
87	Synthesis and modification of Cu-C70 nanocomposite for plasmonic applications. Applied Surface Science, 2019, 466, 615-627.	6.1	6
88	(Invited) Self-Assemble of Supramolecular Polymers of Porphyrin-Bisfulleropyrazoline Tweezers. ECS Meeting Abstracts, 2019, , .	0.0	0
89	Structural Design of Porphyrins for Binary and Ternary Organic Solar Cells with High Efficiency and Low Energy Loss. ECS Meeting Abstracts, 2019, , .	0.0	0
90	Optical properties of Cu-C70nanocomposite under low energy ion irradiation. Materials Research Express, 2018, 5, 035044.	1.6	11

#	Article	IF	CITATIONS
91	Increased Efficiency of Dyeâ€Sensitized Solar Cells by Incorporation of a Ï€ Spacer in Donor–Acceptor Zinc Porphyrins Bearing Cyanoacrylic Acid as an Anchoring Group. European Journal of Inorganic Chemistry, 2018, 2018, 2369-2379.	2.0	8
92	Low Energy Loss of 0.57 eV and High Efficiency of 8.80% in Porphyrin-Based BHJ Solar Cells. ACS Applied Energy Materials, 2018, 1, 1304-1315.	5.1	15
93	Benzothiadiazole Substituted Semiconductor Molecules for Organic Solar Cells: The Effect of the Solvent Annealing Over the Thin Film Hole Mobility Values. Journal of Physical Chemistry C, 2018, 122, 13782-13789.	3.1	14
94	Effect of high energy ions on the electrical and morphological properties of Poly(3-Hexylthiophene) (P3HT) thin film. Physica B: Condensed Matter, 2018, 537, 306-313.	2.7	5
95	Synthesis and photovoltaic properties of new Dâ€A copolymers based on 5,6â€bis(2â€ethylhexyl)naphtha[2,1â€b:3,4â€b′]dithiopheneâ€2,9â€diyl] donor and fluorine substituted 6,7â€bis(9,9â€didodecylâ€9hâ€fluorenâ€2â€yl)[1,2,5] thiadiazolo[3,4â€g]quinoxaline acceptor units. Journal of Polymer Science Part A. 2018, 56, 1297-1307.	2.3	2
96	A non-fullerene all small molecule solar cell constructed with a diketopyrrolopyrrole-based acceptor having a power conversion efficiency higher than 9% and an energy loss of 0.54 eV. Journal of Materials Chemistry A, 2018, 6, 11714-11724.	10.3	49
97	BODIPY–diketopyrrolopyrrole–porphyrin conjugate small molecules for use in bulk heterojunction solar cells. Journal of Materials Chemistry A, 2018, 6, 8449-8461.	10.3	45
98	Edge-on and face-on functionalized Pc on enriched semiconducting SWCNT hybrids. Nanoscale, 2018, 10, 5205-5213.	5.6	18
99	Low energy ion irradiation studies of fullerene C 70 thin films – An emphasis on mapping the local structure modifications. Journal of Physics and Chemistry of Solids, 2018, 117, 204-214.	4.0	9
100	Phenothiazine-based small-molecule organic solar cells with power conversion efficiency over 7% and open circuit voltage of about $1.0~V$ using solvent vapor annealing. Physical Chemistry Chemical Physics, 2018 , 20 , 6321 - 6329 .	2.8	23
101	Asymmetric triphenylamine–phenothiazine based small molecules with varying terminal acceptors for solution processed bulk-heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2018, 20, 6390-6400.	2.8	16
102	Synthesis and characterization of zinc carboxy–porphyrin complexes for dye sensitized solar cells. New Journal of Chemistry, 2018, 42, 8151-8159.	2.8	10
103	Porphyrin Antenna-Enriched BODIPY–Thiophene Copolymer for Efficient Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 992-1004.	8.0	28
104	Polymer solar cells based on D–A low bandgap copolymers containing fluorinated side chains of thiadiazoloquinoxaline acceptor and benzodithiophene donor units. New Journal of Chemistry, 2018, 42, 1626-1633.	2.8	8
105	Effect of acceptor strength on optical, electrochemical and photovoltaic properties of phenothiazine-based small molecule for bulk heterojunction organic solar cells. Dyes and Pigments, 2018, 149, 830-842.	3.7	26
106	Oligothienylenevinylene Polarons and Bipolarons Confined between Electronâ€Accepting Perchlorotriphenylmethyl Radicals. Chemistry - A European Journal, 2018, 24, 3776-3783.	3.3	4
107	Modulation of the power conversion efficiency of organic solar cells <i>via</i> architectural variation of a promising non-fullerene acceptor. Journal of Materials Chemistry A, 2018, 6, 574-582.	10.3	13
108	Photovoltaic Properties of a Porphyrinâ€Containing Polymer as Donor in Bulk Heterojunction Solar Cells With Low Energy Loss. Solar Rrl, 2018, 2, 1700168.	5.8	13

#	Article	IF	Citations
109	Optimization of the Donor Material Structure and Processing Conditions to Obtain Efficient Smallâ€Molecule Donors for Bulk Heterojunction Solar Cells. ChemPhotoChem, 2018, 2, 81-88.	3.0	1
110	Dithienosilole–phenylquinoxalineâ€based copolymers with Aâ€Dâ€Aâ€D and Aâ€D structures for polymer solar cells. Journal of Polymer Science Part A, 2018, 56, 376-386.	2.3	6
111	New iridium-containing conjugated polymers for polymer solar cell applications. New Journal of Chemistry, 2018, 42, 17296-17302.	2.8	9
112	Ni-Porphyrin-based small molecule for efficient organic solar cells (>9.0%) with a high open circuit voltage of over 1.0 V and low energy loss. Chemical Communications, 2018, 54, 14144-14147.	4.1	19
113	Reduced Energy Offsets and Low Energy Losses Lead to Efficient (\hat{a}^4 10% at 1 sun) Ternary Organic Solar Cells. ACS Energy Letters, 2018, 3, 2418-2424.	17.4	20
114	Fabrication of efficient dye-sensitized solar cells with photoanode containing TiO2–Au and TiO2–Ag plasmonic nanocomposites. Journal of Materials Science: Materials in Electronics, 2018, 29, 18209-18220.	2.2	15
115	Panchromatic ternary organic solar cells with 9.44% efficiency incorporating porphyrin-based donors. Nanoscale, 2018, 10, 12100-12108.	5.6	18
116	Selective Screening of Biological Thiols by Means of an Unreported Magenta Interaction and Evaluation Using Smartphones. ACS Omega, 2018, 3, 6617-6623.	3.5	2
117	Nonfullerene Polymer Solar Cells Reaching a 9.29% Efficiency Using a BODIPY-Thiophene Backboned Donor Material. ACS Applied Energy Materials, 2018, 1, 3359-3368.	5.1	22
118	Regioselectivity of the Pauson–Khand reaction in single-walled carbon nanotubes. Nanoscale, 2018, 10, 15078-15089.	5.6	11
119	Low energy ion irradiation induced SPR of Cu-Fullerene C70 nanocomposite thin films. Journal of Alloys and Compounds, 2018, 767, 733-744.	5.5	13
120	Efficient Non-polymeric Heterojunctions in Ternary Organic Solar Cells. ACS Applied Energy Materials, 2018, 1, 4203-4210.	5.1	7
121	Investigation of C60 and C70 fullerenes under low energy ion impact. Journal of Materials Science: Materials in Electronics, 2018, 29, 14762-14773.	2.2	5
122	Enhanced efficiency of PbS quantum dot-sensitized solar cells using plasmonic photoanode. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	9
123	Low Energy Gap Triphenylamine–Heteropentacene–Dicyanovinyl Triad for Solution-Processed Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2018, 122, 11262-11269.	3.1	8
124	Corrole-BODIPY Dyad as Small-Molecule Donor for Bulk Heterojunction Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31462-31471.	8.0	36
125	N-Doped graphene/C60 covalent hybrid as a new material for energy harvesting applications. Chemical Science, 2018, 9, 8221-8227.	7.4	12
126	(Invited) Synthesis of Graphene-C60 Hybrids. ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	Citations
127	Estructural Design of Funcionalized Porphyrins for Very Efficient (> 9%) BHJ Solar Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
128	Synthesis and photovoltaic properties low bandgap D-A copolymers based on fluorinated thiadiazoloquinoxaline. Organic Electronics, 2017, 43, 268-276.	2.6	6
129	Small molecule carbazole-based diketopyrrolopyrroles with tetracyanobutadiene acceptor unit as a non-fullerene acceptor for bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2017, 5, 3311-3319.	10.3	51
130	Photoexfoliation of two-dimensional materials through continuous UV irradiation. Nanotechnology, 2017, 28, 125604.	2.6	6
131	Ferrocene-diketopyrrolopyrrole based small molecule donors for bulk heterojunction solar cells. Physical Chemistry Chemical Physics, 2017, 19, 7262-7269.	2.8	16
132	(D–π–A) ₂ –π–D–A type ferrocenyl bisthiazole linked triphenylamine based molecular systems for DSSC: synthesis, experimental and theoretical performance studies. Physical Chemistry Chemical Physics, 2017, 19, 8925-8933.	2.8	45
133	A Very Low Band Gap Diketopyrrolopyrrole–Porphyrin Conjugated Polymer. ChemPlusChem, 2017, 82, 625-630.	2.8	19
134	Cyclopentadithiophene-based co-oligomers for solution-processed organic solar cells. Dyes and Pigments, 2017, 143, 112-122.	3.7	6
135	Polymer solar cells based low bandgap A1-D-A2-D terpolymer based on fluorinated thiadiazoloquinoxaline and benzothiadiazole acceptors with energy loss less than 0.5ÂeV. Organic Electronics, 2017, 46, 192-202.	2.6	11
136	New cyclopentadithiophene (CDT) linked porphyrin donors with different end-capping acceptors for efficient small molecule organic solar cells. Journal of Materials Chemistry C, 2017, 5, 4742-4751.	5. 5	19
137	Charge stabilizing tris(triphenylamine)-zinc porphyrin–carbon nanotube hybrids: synthesis, characterization and excited state charge transfer studies. Nanoscale, 2017, 9, 7551-7558.	5.6	35
138	Pyrrolo[3,2â€ <i>b</i>]pyrrole as the Central Core of the Electron Donor for Solutionâ€Processed Organic Solar Cells. ChemPlusChem, 2017, 82, 1096-1104.	2.8	32
139	Comparative study on the photovoltaic characteristics of A–D–A and D–A–D molecules based on Zn-porphyrin; a D–A–D molecule with over 8.0% efficiency. Journal of Materials Chemistry A, 2017, 5, 1057-1065.	10.3	49
140	Synthesis, characterization and thermally induced structural transformation of Au-C 70 nanocomposite thin films. Vacuum, 2017, 142, 146-153.	3.5	11
141	Tuning the optoelectronic properties for high-efficiency (>7.5%) all small molecule and fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 14259-14269.	10.3	34
142	Ferrocene-diketopyrrolopyrrole based non-fullerene acceptors for bulk heterojunction polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 13625-13633.	10.3	46
143	Effect of low fluence radiation on nanocomposite thin films of Cu nanoparticles embedded in fullerene C 60. Vacuum, 2017, 142, 5-12.	3.5	24
144	Unprecedented low energy losses in organic solar cells with high external quantum efficiencies by employing non-fullerene electron acceptors. Journal of Materials Chemistry A, 2017, 5, 14887-14897.	10.3	38

#	Article	IF	Citations
145	Efficient Polymer Solar Cells with High Open-Circuit Voltage Containing Diketopyrrolopyrrole-Based Non-Fullerene Acceptor Core End-Capped with Rhodanine Units. ACS Applied Materials & Discrete Ramp; Interfaces, 2017, 9, 11739-11748.	8.0	43
146	Cyclopentadithiophene organic core in small molecule organic solar cells: morphological control of carrier recombination. Physical Chemistry Chemical Physics, 2017, 19, 3640-3648.	2.8	8
147	Operative Mechanism of Hole-Assisted Negative Charge Motion in Ground States of Radical-Anion Molecular Wires. Journal of the American Chemical Society, 2017, 139, 686-692.	13.7	25
148	Benzothiadiazole-pyrrolo [3,4-b] dithieno [2,3-f: $3\hat{a}\in^2$, $2\hat{a}\in^2$ -h] quinoxalindione-based random terpolymer incorporating strong and weak electron accepting [1,2,5] thiadiazolo [3,4g] quinoxaline for polymer solar cells. Organic Electronics, 2017, 41, 1-8.	2.6	5
149	Oligomers of cyclopentadithiophene-vinylene in aromatic and quinoidal versions and redox species with intermediate forms. Chemical Science, 2017, 8, 8106-8114.	7.4	16
150	Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells. Solar Rrl, 2017, 1, 1700127.	5.8	62
151	Regular conjugated D–A copolymer containing two benzotriazole and benzothiadiazole acceptors and dithienosilole donor units for photovoltaic application. RSC Advances, 2017, 7, 49204-49214.	3.6	5
152	Efficient Photoinduced Energy and Electron Transfer in Zn ^{II} â€"Porphyrin/Fullerene Dyads with Interchromophoric Distances up to 2.6â€nm and No Wireâ€like Connectivity. Chemistry - A European Journal, 2017, 23, 14200-14212.	3.3	14
153	Synthesis of new 2,6-bis(6-fluoro-2-hexyl-2H-benzotriazol-4-yl)-4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene based D-A conjugated terpolymers for photovoltaic application. Polymer, 2017, 133, 195-204.	3.8	4
154	Toward Highâ€Performance Polymer Photovoltaic Devices for Lowâ€Power Indoor Applications. Solar Rrl, 2017, 1, 1700174.	5.8	73
155	Dithieno[3,2-b:2′,3′-d]pyrrole-benzo[c][1,2,5]thiadiazole conjugate small molecule donors: effect of fluorine content on their photovoltaic properties. Physical Chemistry Chemical Physics, 2017, 19, 20513-20522.	2.8	7
156	Porphyrin based push–pull conjugates as donors for solution-processed bulk heterojunction solar cells: a case of metal-dependent power conversion efficiency. Journal of Materials Chemistry A, 2017, 5, 15529-15533.	10.3	21
157	Viologen-functionalized single-walled carbon nanotubes as carrier nanotags for electrochemical immunosensing. Application to TGF-β1 cytokine. Biosensors and Bioelectronics, 2017, 98, 240-247.	10.1	28
158	Thermally induced tuning of SPR of metal-fullerene Ag(26%)-C 70 nanocomposite. Surface and Coatings Technology, 2017, 324, 361-367.	4.8	14
159	(Invited) Electron-Donor Behavior of Carbon Nanotubes and Graphene. ECS Meeting Abstracts, 2017, , .	0.0	0
160	Highly Efficient (>8%) Porphyrin-Based Bulk Heterojunction Organic Photovoltaics. ECS Meeting Abstracts, 2017, , .	0.0	0
161	Two new bulky substituted Zn porphyrins bearing carboxylate anchoring groups as promising dyes for DSSCs. New Journal of Chemistry, 2016, 40, 5930-5941.	2.8	12
162	Design, synthesis and photophysical properties of D1-A-D2-A-D1-type small molecules based on fluorobenzotriazole acceptor and dithienosilole core donor for solution processed organic solar cells. Dyes and Pigments, 2016, 132, 387-397.	3.7	7

#	Article	IF	CITATIONS
163	Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study. RSC Advances, 2016, 6, 49543-49550.	3.6	36
164	New alternating D–A ₁ –D–A ₂ copolymer containing two electronâ€deficient moieties based on benzothiadiazole and 9â€(2â€Octyldodecyl)â€8 <i>H</i> àêpyrrolo[3,4â€ <i>b</i>]bisthieno[2,3â€ <i>f</i> :3',2'â€ <i>h</i>]quinoxalineâfor efficient polymer solar cells. Journal of Polymer Science Part A, 2016, 54, 155-168.	€ 8 ;10(9 <i< td=""><td>i>ĦՉ/i>)â€di</td></i<>	i>ĦՉ/i>)â€di
165	High performance dye-sensitized solar cell from a cocktail solution of a ruthenium dye and metal free organic dye. RSC Advances, 2016, 6, 41151-41155.	3.6	15
166	A D–π–A1–π–A2 push–pull small molecule donor for solution processed bulk heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 13918-13926.	2.8	12
167	Synthesis of alternating D–A1–D–A2 terpolymers comprising two electron-deficient moieties, quinoxaline and benzothiadiazole units for photovoltaic applications. Polymer Chemistry, 2016, 7, 4025-4035.	3.9	11
168	Regioselective preparation of a bis-pyrazolinofullerene by a macrocyclization reaction. Chemical Communications, 2016, 52, 13205-13208.	4.1	1
169	Modulation of the exfoliated graphene work function through cycloaddition of nitrile imines. Physical Chemistry Chemical Physics, 2016, 18, 29582-29590.	2.8	16
170	High performance A–D–A oligothiophene-based organic solar cells employing two-step annealing and solution-processable copper thiocyanate (CuSCN) as an interfacial hole transporting layer. Journal of Materials Chemistry A, 2016, 4, 17344-17353.	10.3	21
171	Symmetrical and unsymmetrical triphenylamine based diketopyrrolopyrroles and their use as donors for solution processed bulk heterojunction organic solar cells. RSC Advances, 2016, 6, 99685-99694.	3.6	17
172	New ultra low bandgap thiadiazolequinoxaline-based D-A copolymers for photovoltaic applications. Organic Electronics, 2016, 37, 411-420.	2.6	2
173	Efficient Solution Processable Polymer Solar Cells Using Newly Designed and Synthesized Fullerene Derivatives. Journal of Physical Chemistry C, 2016, 120, 19493-19503.	3.1	17
174	Synthesis and photophysical properties of regioregular low bandgap copolymers with controlled 5-fluorobenzotriazole orientation for photovoltaic application. Polymer Chemistry, 2016, 7, 5849-5861.	3.9	11
175	Dithienopyrrole-benzodithiophene based donor materials for small molecular BHJSCs: Impact of side chain and annealing treatment on their photovoltaic properties. Organic Electronics, 2016, 37, 312-325.	2.6	24
176	New D-A1–D-A2-Type Regular Terpolymers Containing Benzothiadiazole and Benzotrithiophene Acceptor Units for Photovoltaic Application. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32998-33009.	8.0	18
177	Efficiency improvement using bis(trifluoromethane) sulfonamide lithium salt as a chemical additive in porphyrin based organic solar cells. Nanoscale, 2016, 8, 17953-17962.	5.6	23
178	High photo-current in solution processed organic solar cells based on a porphyrin core A-Ï€-D-Ï€-A as electron donor material. Organic Electronics, 2016, 38, 330-336.	2.6	13
179	Small molecule based N-phenyl carbazole substituted diketopyrrolopyrroles as donors for solution-processed bulk heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 22999-23005.	2.8	20
180	Synthesis of new D-A1–D-A2 type low bandgap terpolymers based on different thiadiazoloquinoxaline acceptor units for efficient polymer solar cells. RSC Advances, 2016, 6, 71232-71244.	3.6	11

#	Article	IF	Citations
181	A dithieno [3,2-b:2′,3′-d]pyrrole based, NIR absorbing, solution processable, small molecule donor for efficient bulk heterojunction solar cells. Physical Chemistry Chemical Physics, 2016, 18, 32096-32106.	2.8	15
182	Synthesis and photophysical properties of semiconductor molecules D1-A-D2-A-D1-type structure based on derivatives of quinoxaline and dithienosilole for organics solar cells. Organic Electronics, 2016, 39, 361-370.	2.6	3
183	Low Open-Circuit Voltage Loss in Solution-Processed Small-Molecule Organic Solar Cells. ACS Energy Letters, 2016, 1, 302-308.	17.4	59
184	Ultrafast electron transfer in all-carbon-based SWCNT–C ₆₀ donor–acceptor nanoensembles connected by poly(phenylene–ethynylene) spacers. Nanoscale, 2016, 8, 14716-14724.	5 . 6	18
185	CuSCN as selective contact in solution-processed small-molecule organic solar cells leads to over 7% efficient porphyrin-based device. Journal of Materials Chemistry A, 2016, 4, 11009-11022.	10.3	39
186	D–A–D–π–D–A–D type diketopyrrolopyrrole based small molecule electron donors for bulk heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 16950-16957.	2.8	22
187	Design and synthesis of new ultra-low band gap thiadiazoloquinoxaline-based polymers for near-infrared organic photovoltaic application. RSC Advances, 2016, 6, 14893-14908.	3.6	26
188	Hetero aromatic donors as effective terminal groups for DPP based organic solar cells. RSC Advances, 2016, 6, 9023-9036.	3 . 6	6
189	Charge recombination losses in thiophene-substituted porphyrin dye-sensitized solar cells. Dyes and Pigments, 2016, 126, 147-153.	3.7	18
190	1,1,4,4-Tetracyanobuta-1,3-diene Substituted Diketopyrrolopyrroles: An Acceptor for Solution Processable Organic Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2016, 120, 6324-6335.	3.1	61
191	Solution processed bulk heterojunction solar cells based on A–D–A small molecules with a dihydroindoloindole (DINI) central donor and different acceptor end groups. Journal of Materials Chemistry C, 2016, 4, 3508-3516.	5. 5	17
192	New low bandgap near-IR conjugated D–A copolymers for BHJ polymer solar cell applications. Physical Chemistry Chemical Physics, 2016, 18, 8389-8400.	2.8	18
193	Pyridyl vs. bipyridyl anchoring groups of porphyrin sensitizers for dye sensitized solar cells. RSC Advances, 2016, 6, 22187-22203.	3 . 6	18
194	Dicyanoquinodimethane-substituted benzothiadiazole for efficient small-molecule solar cells. Physical Chemistry Chemical Physics, 2016, 18, 7235-7241.	2.8	22
195	Heteroleptic Ru(ii)-bipyridine complexes based on hexylthioether-, hexyloxy- and hexyl-substituted thienylenevinylenes and their application in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 11901-11908.	2.8	2
196	The effect of acceptor end groups on the physical and photovoltaic properties of A–π–D–π–A type oligomers with same S, N-heteropentacene central electron donor unit for solution processed organic solar cells. Dyes and Pigments, 2016, 129, 209-219.	3.7	23
197	D-A-D-A-D push pull organic small molecules based on 5,10-dihydroindolo[3,2-b]indole (DINI) central core donor for solution processed bulk heterojunction solar cells. Organic Electronics, 2016, 30, 122-130.	2.6	28
198	(4 + 2) and (2 + 2) Cycloadditions of Benzyne to C ₆₀ and Zig-Zag Single-Walled Carbon Nanotubes: The Effect of the Curvature. Journal of Physical Chemistry C, 2016, 120, 1716-1726.	3.1	34

#	Article	IF	CITATIONS
199	Synthesis, characterization and photoinduced charge separation of carbon nanohorn–oligothienylenevinylene hybrids. Physical Chemistry Chemical Physics, 2016, 18, 1828-1837.	2.8	8
200	Positional isomers of pyridine linked triphenylamine-based donor-acceptor organic dyes for efficient dye-sensitized solar cells. Dyes and Pigments, 2016, 126, 38-45.	3.7	36
201	A New D-A conjugated polymer P(PTQD-BDT) with PTQD acceptor and BDT donor units for BHJ polymer solar cells application. Journal of Polymer Science Part A, 2015, 53, 2390-2398.	2.3	10
202	A mono(carboxy)porphyrin-triazine-(bodipy) ₂ triad as a donor for bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2015, 3, 6209-6217.	5 . 5	29
203	A new unsymmetrical near-IR small molecule with squaraine chromophore for solution processed bulk heterojunction solar cells. Journal of Materials Chemistry C, 2015, 3, 7029-7037.	5.5	16
204	Two new D–A conjugated polymers P(PTQD-Th) and P(PTQD-2Th) with same 9-(2-octyldodecyl)-8 H -pyrrolo[3,4- b]bisthieno[2,3-f:3′,2′- h]quinoxaline-8,10(9 H)-dione acceptor and different donor units for BHJ polymer solar cells application. Organic Electronics, 2015, 24, 137-146.	2.6	6
205	S,N-Heteropentacene based small molecules with A–D–A structure for solution processed organic bulk heterojunction solar cells. RSC Advances, 2015, 5, 102115-102125.	3.6	9
206	Synthesis and characterization of π-conjugated copolymers with thieno-imidazole units in the main chain: application for bulk heterojunction polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 7888-7897.	2.8	6
207	Donor–acceptor–π–acceptor based charge transfer chromophore as electron donors for solution processed small molecule organic bulk heterojunction solar cells. Organic Electronics, 2015, 19, 76-82.	2.6	27
208	Robust Ethylenedioxythiophene–Vinylene Oligomers from Fragile Thiophene–Vinylene Cores: Synthesis and Optical, Chemical and Electrochemical Properties of Multicharged Shapes. Chemistry - A European Journal, 2015, 21, 1713-1725.	3.3	13
209	Solution processed organic solar cells based on A–D—Dâ€2–D—A small molecule with benzo[1,2-b:4,5-bâ€2]dithiophene donor (Dâ€2) unit, cyclopentadithiophene donor (D) and ethylrhodanine acceptor unit having 6% light to energy conversion efficiency. Journal of Materials Chemistry A, 2015, 3, 4892-4902.	10.3	23
210	Role of the Bridge in Photoinduced Electron Transfer in Porphyrin–Fullerene Dyads. Chemistry - A European Journal, 2015, 21, 5814-5825.	3.3	45
211	Donor-ï∈-acceptor, triazine-linked porphyrin dyads as sensitizers for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2015, 19, 175-191.	0.8	5
212	Efficient co-sensitization of dye-sensitized solar cells by novel porphyrin/triazine dye and tertiary aryl-amine organic dye. Organic Electronics, 2015, 25, 295-307.	2.6	47
213	Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum. Biosensors and Bioelectronics, 2015, 74, 24-29.	10.1	47
214	A–π–D–π–A based porphyrin for solution processed small molecule bulk heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 16287-16301.	10.3	47
215	New D-A-D-A-D push–pull organic semiconductors with different benzo[1,2-b:4, 5-b′] dithiophene cores for solution processed bulk heterojunction solar cells. Dyes and Pigments, 2015, 120, 126-135.	3.7	23
216	"Scorpion―shaped mono(carboxy)porphyrin-(BODIPY) ₂ , a novel triazine bridged triad: synthesis, characterization and dye sensitized solar cell (DSSC) applications. Journal of Materials Chemistry C, 2015, 3, 5652-5664.	5.5	43

#	Article	IF	Citations
217	Synthesis and characterization of two new benzothiadiazole- andÂfused bithiophene based low band-gap D–A copolymers: Application as donor bulk heterojunction polymer solar cells. Polymer, 2015, 65, 193-201.	3.8	16
218	Characterization of metal-free D-(Ï€-A)2 organic dye and its application as cosensitizer along with N719 dye for efficient dye-sensitized solar cells. Indian Journal of Physics, 2015, 89, 1041-1050.	1.8	14
219	Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides. Journal of Materials Chemistry C, 2015, 3, 4960-4969.	5.5	16
220	New acceptorâ€"i€-porphyrinâ€"i€-acceptor systems for solution-processed small molecule organic solar cells. Dyes and Pigments, 2015, 121, 109-117.	3.7	32
221	High photocurrent in oligo-thienylenevinylene-based small molecule solar cells with 4.9% solar-to-electrical energy conversion. Journal of Materials Chemistry A, 2015, 3, 11340-11348.	10.3	15
222	Unsymmetrical Donor–Acceptor–Acceptorâ~π–Donor Type Benzothiadiazole-Based Small Molecule for a Solution Processed Bulk Heterojunction Organic Solar Cell. ACS Applied Materials & Diterfaces, 2015, 7, 10283-10292.	8.0	79
223	Efficient bulk heterojunction solar cells based on solution processed small molecules based on the same benzo[1,2-b:4, 5-b′]thiophene unit as core donor and different terminal units. Nanoscale, 2015, 7, 7692-7703.	5.6	18
224	Free-base porphyrin and [60]fullerene linked by oligomeric ethylenedioxythienylenevinylene bridge. Journal of Porphyrins and Phthalocyanines, 2015, 19, 404-410.	0.8	2
225	Donor–acceptor–acceptor–donor small molecules for solution processed bulk heterojunction solar cells. Organic Electronics, 2015, 27, 72-83.	2.6	24
226	Peripheral versus axial substituted phthalocyanine-double-walled carbon nanotube hybrids as light harvesting systems. Journal of Materials Chemistry C, 2015, 3, 10215-10224.	5.5	17
227	Influence of thermal and solvent annealing on the morphology and photovoltaic performance of solution processed, D–A–D type small molecule-based bulk heterojunction solar cells. RSC Advances, 2015, 5, 93579-93590.	3.6	13
228	A supramolecular assembling of zinc porphyrin with a ¨E-conjugated oligo(phenylenevinylene) (oPPV) molecular wire for dye sensitized solar cell. RSC Advances, 2015, 5, 88508-88519.	3.6	18
229	Solvent Annealing Control of Bulk Heterojunction Organic Solar Cells with 6.6% Efficiency Based on a Benzodithiophene Donor Core and Dicyano Acceptor Units. Journal of Physical Chemistry C, 2015, 119, 20871-20879.	3.1	35
230	Bulk heterojunction organic solar cells based on carbazole–BODIPY conjugate small molecules as donors with high open circuit voltage. Physical Chemistry Chemical Physics, 2015, 17, 26580-26588.	2.8	53
231	Synthesis, optical and electrochemical properties new donorâ \in acceptor (Dâ \in A) copolymers based on benzo[1,2-b:3,4-bâ \in 2:6,5-bâ \in 3] trithiophene donor and different acceptor units: Application as donor for photovoltaic devices. Organic Electronics, 2015, 17, 167-177.	2.6	9
232	CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material. Electrochimica Acta, 2015, 151, 21-26.	5.2	53
233	Synthesis, optical and electrochemical properties of the A–π-D–π-A porphyrin and its application as an electron donor in efficient solution processed bulk heterojunction solar cells. Nanoscale, 2015, 7, 179-189.	5.6	48
234	Stepwise co-sensitization as a useful tool for enhancement of power conversion efficiency of dye-sensitized solar cells: The case of an unsymmetrical porphyrin dyad and a metal-free organic dye. Organic Electronics, 2014, 15, 1324-1337.	2.6	39

#	Article	IF	CITATIONS
235	Photoinduced electron transfer in a carbon nanohorn–C60 conjugate. Chemical Science, 2014, 5, 2072.	7.4	21
236	Effect of ethylene carbonate as a plasticizer on Cul/PVA nanocomposite: Structure, optical and electrical properties. Journal of Advanced Research, 2014, 5, 79-86.	9.5	59
237	Doubleâ€Wall Carbon Nanotube–Porphyrin Supramolecular Hybrid: Synthesis and Photophysical Studies. ChemPhysChem, 2014, 15, 100-108.	2.1	11
238	Characterization of two new (A–̀)2–D–A type dyes with different central D unit and their application for dye sensitized solar cells. Organic Electronics, 2014, 15, 1780-1790.	2.6	13
239	A Propellerâ€Shaped, Triazineâ€Linked Porphyrin Triad as Efficient Sensitizer for Dyeâ€Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2014, 2014, 1020-1033.	2.0	43
240	Triazine-Bridged Porphyrin Triad as Electron Donor for Solution-Processed Bulk Hetero-Junction Organic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 5968-5977.	3.1	50
241	Near Infrared Organic Semiconducting Materials for Bulk Heterojunction and Dyeâ€Sensitized Solar Cells. Chemical Record, 2014, 14, 419-481.	5.8	20
242	Photoinduced electron transfer of zinc porphyrin–oligo(thienylenevinylene)–fullerene[60] triads; thienylenevinylenes as efficient molecular wires. Physical Chemistry Chemical Physics, 2014, 16, 2443-2451.	2.8	27
243	New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application. Journal of Materials Chemistry A, 2014, 2, 155-171.	10.3	55
244	Improved power conversion efficiency by insertion of RGOâ€"TiO2 composite layer as optical spacer in polymer bulk heterojunction solar cells. Organic Electronics, 2014, 15, 348-355.	2.6	21
245	"Spider―Shaped Porphyrins with Conjugated Pyridyl Anchoring Groups as Efficient Sensitizers for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2014, 53, 11871-11881.	4.0	29
246	Dye-sensitized solar cells based on triazine-linked porphyrin dyads containing one or two carboxylic acid anchoring groups. Inorganic Chemistry Frontiers, 2014, 1, 256-270.	6.0	21
247	Indole and triisopropyl phenyl as capping units for a diketopyrrolopyrrole (DPP) acceptor central unit: an efficient D–A–D type small molecule for organic solar cells. RSC Advances, 2014, 4, 732-742.	3.6	23
248	New solution processed bulk-heterojunction organic solar cells based on a triazine-bridged porphyrin dyad as electron donor. RSC Advances, 2014, 4, 50819-50827.	3.6	14
249	Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA[DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2014, 2, 8412-8422.	5.5	19
250	Synthesis and photovoltaic properties of new donor–acceptor (D–A) copolymers based on benzo[1,2-b:3,4-b′:6,5-b′′] trithiophene donor and different acceptor units (P1 and P2). RSC Advances, 2 4, 53531-53542.	03.4,	5
251	Synthesis, optical and electrochemical properties of new ferrocenyl substituted triphenylamine based donor–acceptor dyes for dye sensitized solar cells. RSC Advances, 2014, 4, 34904-34911.	3.6	47
252	A novel carbazole–phenothiazine dyad small molecule as a non-fullerene electron acceptor for polymer bulk heterojunction solar cells. RSC Advances, 2014, 4, 33279-33285.	3.6	28

#	Article	IF	CITATIONS
253	Carbon Nanohorns as a Scaffold for the Construction of Disposable Electrochemical Immunosensing Platforms. Application to the Determination of Fibrinogen in Human Plasma and Urine. Analytical Chemistry, 2014, 86, 7749-7756.	6.5	53
254	Synthesis, optical and electrochemical properties of small molecules DMM-TPA[DTS(FBTTh3)3] and TPA[DTS(FBTTh3)3], and their application as donors for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 12368-12379.	10.3	16
255	Novel electron-withdrawing π-conjugated pyrene-containing poly(phenylquinoxaline)s. Doklady Chemistry, 2014, 456, 65-71.	0.9	8
256	Synthesis and photovoltaic properties of D–A–D type small molecules containing diketopyrrolopyrrole (DPP) acceptor central unit with different donor terminal units. Organic Electronics, 2014, 15, 2116-2125.	2.6	20
257	Use of Thienylenevinylene and Ethynyl Molecular Bridges in Organic Dyes for Dyeâ€6ensitized Solar Cells: Implications for Device Performance. ChemElectroChem, 2014, 1, 1126-1129.	3.4	8
258	The importance of various anchoring groups attached on porphyrins as potential dyes for DSSC applications. RSC Advances, 2014, 4, 21379-21404.	3.6	125
259	Effect of Incorporation of Squaraine Dye on the Photovoltaic Response of Bulk Heterojunction Solar Cells Based on P3HT:PC ₇₀ BM Blend. ACS Sustainable Chemistry and Engineering, 2014, 2, 1743-1751.	6.7	25
260	Application of solution processable squaraine dyes as electron donors for organic bulk-heterojunction solar cells. Photochemical and Photobiological Sciences, 2013, 12, 1688-1699.	2.9	22
261	Efficient cycloaddition of arynes to carbon nanotubes under microwave irradiation. Carbon, 2013, 63, 140-148.	10.3	26
262	Efficient Sensitization of Dye-Sensitized Solar Cells by Novel Triazine-Bridged Porphyrin–Porphyrin Dyads. Inorganic Chemistry, 2013, 52, 9813-9825.	4.0	51
263	High open circuit voltage in efficient thiophene-based small molecule solution processed organic solar cells. Organic Electronics, 2013, 14, 2826-2832.	2.6	33
264	Co-sensitization of amphiphilic ruthenium (II) sensitizer with a metal free organic dye: Improved photovoltaic performance of dye sensitized solar cells. Organic Electronics, 2013, 14, 1237-1241.	2.6	43
265	New soluble porphyrin bearing a pyridinylethynyl group as donor for bulk heterojunction solar cells. Organic Electronics, 2013, 14, 1811-1819.	2.6	31
266	Synthesis and characterization of two carbazole-based alternating copolymers with 4-nitrophenylcyanovinylene pendant groups and their use as electron donors for bulk heterojunction solar cells. RSC Advances, 2013, 3, 18821.	3.6	5
267	Effect of porphyrin loading on performance of dye sensitized solar cells based on iodide/tri-iodide and cobalt electrolytes. Journal of Materials Chemistry A, 2013, 1, 13640.	10.3	22
268	Characterization of PVA/Cul polymer composites as electron donor for photovoltaic application. Optik, 2013, 124, 1624-1631.	2.9	35
269	Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of zinc-porphyrin and thiocyanate-free ruthenium(ii)-terpyridine dyes and graphene modified TiO2 photoanode. RSC Advances, 2013, 3, 22412.	3.6	67
270	Molecular dynamics of solutions of poly-3-octyl-thiophene and functionalized single wall carbon nanotubes studied by neutron scattering. Chemical Physics, 2013, 427, 129-141.	1.9	4

#	Article	IF	Citations
271	New donor–acceptor conjugated polymers based on benzo[1,2-b:4,5-b′]dithiophene for photovoltaic cells. Synthetic Metals, 2013, 166, 7-13.	3.9	11
272	A star-shaped sensitizer based on thienylenevinylene for dye-sensitized solar cells. Tetrahedron Letters, 2013, 54, 431-435.	1.4	5
273	An A–D–A small molecule based on the 3,6-dithienylcarbazole electron donor (D) unit and nitrophenyl acrylonitrileelectron acceptor (A) units for solution processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 2297-2306.	10.3	38
274	Cosensitization of dye sensitized solar cells with a thiocyanate free Ru dye and a metal free dye containing thienylfluorene conjugation. RSC Advances, 2013, 3, 6036.	3.6	63
275	Synthesis and characterization of a low band gap quinoxaline based D–A copolymer and its application as a donor for bulk heterojunction polymer solar cells. Polymer Chemistry, 2013, 4, 4033.	3.9	33
276	A new porphyrin bearing a pyridinylethynyl group as sensitizer for dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 253, 88-96.	3.9	49
277	Diarylmethanofullerene: Efficient Polymer Solar Cells with Low-Band-Gap Copolymer. Journal of Physical Chemistry C, 2013, 117, 13350-13356.	3.1	20
278	Synthesis of new conjugated copolymers containing 4,8-bis(dodecyloxy)benzo[1,2-b:4,5-b′]dithiophene/5,7-bis(3,4-diethylthien-2-yl)-2,3-diphenylthieno[3,4-b]pyra and 4,8-bis(dodecyloxy)benzo[1,2-b:4,5-b′]dithiophene/4,6-di(3,4-diethylthien-2-yl)-thieno[3,4-c][1,2,5]thiadiazole	0.8	0
279	derivatives for photovoltaic applications. Polymer Science - Series B, 2013, 55, 373-381. Push–pull triphenylamine based chromophores as photosensitizers and electron donors for molecular solar cells. Tetrahedron, 2013, 69, 6875-6883.	1.9	8
280	Organic bulk heterojunction solar cells based on solution processable small molecules (A–π–A) featuring 2-(4-nitrophenyl) acrylonitrile acceptors and phthalimide-based π-linkers. Journal of Materials Chemistry, 2012, 22, 13986.	6.7	21
281	Organic Dyes Incorporating Oligothienylenevinylene for Efficient Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 5732-5735.	4.6	12
282	Photochemical Evidence of Electronic Interwall Communication in Doubleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2012, 18, 16922-16930.	3.3	11
283	Highâ€efficiency polymer solar cells based on phenylenevinylene copolymer with BF ₂ å€azopyrrole complex and CNâ€PC ₇₀ BM with solvent additive. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1612-1618.	2.1	7
284	Effect of the bridge substitution on the efficiency of dye-sensitized solar cells. Tetrahedron Letters, 2012, 53, 6665-6669.	1.4	8
285	Delocalization-to-Localization Charge Transition in Diferrocenyl-Oligothienylene-Vinylene Molecular Wires as a Function of the Size by Raman Spectroscopy. Journal of the American Chemical Society, 2012, 134, 5675-5681.	13.7	33
286	Solution processed bulk heterojunction polymer solar cells with low band gap DPP-CN small molecule sensitizer. Organic Electronics, 2012, 13, 1756-1762.	2.6	36
287	New Triphenylamine-Based Organic Dyes with Different Numbers of Anchoring Groups for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 5941-5950.	3.1	68
288	A new family of A2B2 type porphyrin derivatives: synthesis, physicochemical characterization and their application in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 8092.	6.7	45

#	Article	IF	Citations
289	Improvement in the power conversion efficiency of thiocyanate-free Ru(ii) based dye sensitized solar cells by cosensitization with a metal-free dye. Journal of Materials Chemistry, 2012, 22, 18788.	6.7	27
290	Effect of linker used in D–A–π–A metal free dyes with different π-spacers for dye sensitized solar cells. Organic Electronics, 2012, 13, 3108-3117.	2.6	21
291	Synthesis and characterization of a new perylene bisimide (PBI) derivative and its application as electron acceptor for bulk heterojunction polymer solar cells. Organic Electronics, 2012, 13, 3118-3129.	2.6	28
292	Photophysical, electrochemical and photovoltaic properties of dye sensitized solar cells using a series of pyridyl functionalized porphyrin dyes. RSC Advances, 2012, 2, 12899.	3 . 6	76
293	Dithienylthienothiadiazole-based organic dye containing two cyanoacrylic acid anchoring units for dye-sensitized solar cells. RSC Advances, 2012, 2, 11457.	3.6	19
294	Synthesis of a Modified PC ₇₀ BM and Its Application as an Electron Acceptor with Poly(3â€hexylthiophene) as an Electron Donor for Efficient Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2012, 22, 4087-4095.	14.9	39
295	Photoinduced Energy and Electron Transfer in Phenylethynylâ€Bridged Zinc Porphyrin–Oligothienylenevinylene–C ₆₀ Ensembles. Chemistry - A European Journal, 2012, 18, 7473-7485.	3.3	20
296	Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes. Nanoscale, 2012, 4, 4370.	5.6	44
297	Bulk heterojunction organic photovoltaic devices based on small molecules featuring pyrrole and carbazole and 2-(4-nitrophenyl)acrylonitrile acceptor segments as donor and fullerene derivatives as acceptor. Dyes and Pigments, 2012, 94, 320-329.	3.7	20
298	Efficient bulk heterojunction solar cells based on D–A copolymers as electron donors and PC70BM as electron acceptor. Materials Chemistry and Physics, 2012, 135, 25-31.	4.0	10
299	Photovoltaic properties of low band gap copolymers based on phenylenevinylene donor and cyanovinylene 4-nitrophenyl acceptor units. Organic Electronics, 2012, 13, 252-263.	2.6	10
300	Efficient bulk heterojunction photovoltaic devices based on diketopyrrolopyrrole containing small molecule as donor and modified PCBM derivatives as electron acceptors. Organic Electronics, 2012, 13, 652-666.	2.6	22
301	Photovoltaic properties of bulk heterojunction devices based on Cul-PVA as electron donor and PCBM and modified PCBM as electron acceptor. Materials Science-Poland, 2012, 30, 10-16.	1.0	13
302	Synthesis of a Broadly Absorbing Modified PCBM and Application As Electron Acceptor with Poly(3-Hexylthiophene) As Electron Donor in Efficient Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2011, 115, 7806-7816.	3.1	30
303	Panchromatic Push–Pull Chromophores based on Triphenylamine as Donors for Molecular Solar Cells. Organic Letters, 2011, 13, 5362-5365.	4.6	28
304	Pyrazolinofullerenes: a less known type of highly versatile fullerene derivatives. Chemical Society Reviews, 2011, 40, 5232.	38.1	57
305	Efficient Bulk Heterojunction Solar Cells Based on a Broadly Absorbing Phenylenevinylene Copolymer Containing Thiophene and Pyrrole Rings. Journal of Physical Chemistry C, 2011, 115, 7056-7066.	3.1	20
306	Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells. Journal of Materials Chemistry, 2011, 21, 4679.	6.7	60

#	Article	IF	CITATIONS
307	A soluble hybrid material combining carbon nanohorns and C60. Chemical Communications, 2011, 47, 12771.	4.1	24
308	Low band gap dyes based on 2-styryl-5-phenylazo-pyrrole: Synthesis and application for efficient dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 4152-4161.	7.8	77
309	Mass Spectrometry Studies of the Retro-Cycloaddition Reaction of Pyrrolidino and 2-Pyrazolinofullerene Derivatives Under Negative ESI Conditions. Journal of the American Society for Mass Spectrometry, 2011, 22, 557-567.	2.8	14
310	A Simple and Effective Modification of PCBM for Use as an Electron Acceptor in Efficient Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2011, 21, 746-755.	14.9	147
311	Triplication of the Photocurrent in Dye Solar Cells by Increasing the Elongation of the Ï€â€conjugation in Znâ€Porphyrin Sensitizers. ChemPhysChem, 2011, 12, 961-965.	2.1	33
312	Synthesis and Photoinduced Energy―and Electronâ€Transfer Processes of C ₆₀ â€"Oligothienylenevinyleneâ€"C ₇₀ Dumbbell Compounds. Chemistry - A European Journal, 2011, 17, 5432-5444.	3.3	9
313	Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe. Electrochimica Acta, 2011, 56, 5566-5574.	5.2	12
314	New photosensitizer with phenylenebisthiophene central unit and cyanovinylene 4-nitrophenyl terminal units for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 5616-5623.	5.2	37
315	Low band-gap phenylenevinylene and fluorenevinylene small molecules containing triphenylamine segments: Synthesis and application in bulk heterojunction solar cells. Organic Electronics, 2011, 12, 774-784.	2.6	18
316	Novel zinc porphyrin with phenylenevinylene meso-substituents: Synthesis and application in dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 6622-6628.	7.8	39
317	Triphenylamine- and benzothiadiazole-based dyes with multiple acceptors for application in dye-sensitized solar cells. Journal of Power Sources, 2010, 195, 3002-3010.	7.8	20
318	Bandgap Modulation in Efficient <i>n</i> aê¶hiophene Absorbers for Dye Solar Cell Sensitization. ChemPhysChem, 2010, 11, 245-250.	2.1	35
319	A Carbon NanohornPorphyrin Supramolecular Assembly for Photoinduced Electronâ€Transfer Processes. Chemistry - A European Journal, 2010, 16, 10752-10763.	3.3	45
320	Synthesis of benzoselenadiazole-based small molecule and phenylenevinylene copolymer and their application for efficient bulk heterojunction solar cells. Organic Electronics, 2010, 11, 311-321.	2.6	29
321	Symmetrical molecules of low band gap with a central spacer connected via ether bond with terminal 4-nitro-α-cyanostilbene units: Synthesis and application for bulk heterojunction solar cells. Organic Electronics, 2010, 11, 1631-1641.	2.6	3
322	Conjugated small molecules with broad absorption containing pyridine and pyran units: Synthesis and application for bulk heterojunction solar cells. Organic Electronics, 2010, 11, 2045-2054.	2.6	14
323	Effect of surface modification of TiO2 on the photovoltaic performance of the quasi solid state dye sensitized solar cells using a benzothiadiazole-based dye. Journal of Power Sources, 2010, 195, 3011-3016.	7.8	48
324	Synthesis of new low band gap dyes with BF2–azopyrrole complex and their use for dye-sensitized solar cells. Journal of Power Sources, 2010, 195, 5391-5398.	7.8	26

#	Article	IF	Citations
325	Effect of thermal annealing and incorporating TiO2 layer on the photovoltaic performance of single-and bi-layer bulk heterojunction devices based on phenylenevinylene copolymer and small molecule. Organic Electronics, 2010, 11, 731-742.	2.6	7
326	Simple sensitizers of low band gap based on 4-nitro-î±-cyanostilbene prepared from a one-step reaction for efficient dye-sensitized solar cells. Organic Electronics, 2010, 11, 1242-1249.	2.6	14
327	Quasi solid state dye-sensitized solar cells with modified TiO2 photoelectrodes and triphenylamine-based dye. Electrochimica Acta, 2010, 55, 2368-2372.	5.2	20
328	Nanoscale Interaction Between CdSe or CdTe Nanocrystals and Molecular Dyes Fostering or Hindering Directional Charge Separation. Small, 2010, 6, 221-225.	10.0	59
329	Novel Broadly Absorbing Sensitizers with Cyanovinylene 4-Nitrophenyl Segments and Various Anchoring Groups: Synthesis and Application for High-Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 12355-12363.	3.1	31
330	Effect of Solvent and Subsequent Thermal Annealing on the Performance of Phenylenevinylene Copolymer:PCBM Solar Cells. ACS Applied Materials & Samp; Interfaces, 2010, 2, 504-510.	8.0	31
331	Diketopyrrolopyrrole-Based Donorâ^'Acceptor Copolymers as Organic Sensitizers for Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 3287-3291.	3.1	43
332	Novel Low Band Gap Phenylenevinylene Copolymer with BF ₂ â^'Azopyrrole Complex Units: Synthesis and Use for Efficient Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2010, 114, 1520-1527.	3.1	22
333	Bulk Heterojunction Photovoltaics Using Broadly Absorbing Small Molecules Based on 2-Styryl-5-phenylazo-pyrrole. Langmuir, 2010, 26, 17739-17748.	3.5	7
334	Synthesis of a Low-Band-Gap Small Molecule Based on Acenaphthoquinoxaline for Efficient Bulk Heterojunction Solar Cells. Langmuir, 2010, 26, 12909-12916.	3.5	23
335	Bulk heterojunction solar cells based on a low band gap soluble bisazopyrrole and the corresponding BF2-azopyrrole complex. Journal of Materials Chemistry, 2010, 20, 6464.	6.7	16
336	Novel Low Band Gap Small Molecule and Phenylenevinylene Copolymer with Cyanovinylene 4-Nitrophenyl Segments: Synthesis and Application for Efficient Bulk Heterojunction Solar Cells. ACS Applied Materials & Diterfaces, 2010, 2, 270-278.	8.0	51
337	Photovoltaic performance of quasi-solid state dye sensitized solar cells based on perylene dye and modified TiO2 photo-electrode. Synthetic Metals, 2010, 160, 127-133.	3.9	6
338	Synthesis of a perylene bisimide with acetonaphthopyrazine dicarbonitrile terminal moieties for photovoltaic applications. Synthetic Metals, 2010, 160, 932-938.	3.9	38
339	A phenylenevinylene copolymer with perylene bisimde units as organic sensitizer for dye-sensitized solar cells. Synthetic Metals, 2010, 160, 1427-1432.	3.9	7
340	Geminate Charge Recombination in Polymer/Fullerene Bulk Heterojunction Films and Implications for Solar Cell Function. Journal of the American Chemical Society, 2010, 132, 12440-12451.	13.7	130
341	Enhanced Performance of Bulk Heterojunction Solar Cells Using Novel Alternating Phenylenevinylene Copolymers of Low Band Gap with Cyanovinylene 4-Nitrophenyls. Macromolecules, 2010, 43, 5544-5553.	4.8	33
342	Synthesis of Diketopyrrolopyrrole Containing Copolymers: A Study of Their Optical and Photovoltaic Properties. Journal of Physical Chemistry B, 2010, 114, 3095-3103.	2.6	116

#	Article	IF	Citations
343	Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene–pyrene bisimide. Journal of Materials Chemistry, 2010, 20, 561-567.	6.7	90
344	Cycloaddition of benzyne to SWCNT: towards CNT-based paddle wheels. Chemical Communications, 2010, 46, 7028.	4.1	40
345	Ferrocenylâ€Ended Thieno–Vinylene Oligomers: Donor–Acceptor Polarization and Mixedâ€Valence Properties with Emphasis on the Raman Mapping of Localizedâ€toâ€Delocalized Transitions. Chemistry - A European Journal, 2009, 15, 2548-2559.	3.3	19
346	Electron Transfer Dynamics in Dyeâ€Sensitized Solar Cells Utilizing Oligothienylvinylene Derivates as Organic Sensitizers. ChemSusChem, 2009, 2, 344-349.	6.8	12
347	Influence of nitro group substitution at molecular ligand on optical, structural, charge-transport and photovoltaic properties of Sn (II) phthalocyanine. Journal of Materials Science: Materials in Electronics, 2009, 20, 984-995.	2.2	5
348	Quasi solid state dye sensitized solar cells employing a polymer electrolyte and xanthene dyes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 162, 32-39.	3.5	47
349	Low band gap vinylene compounds with triphenylamine and benzothiadiazole segments for use in photovoltaic cells. Organic Electronics, 2009, 10, 1320-1333.	2.6	59
350	Charge conduction process and photoelectrical properties of bulk heterojunction device based on sulphonated nickel phthalocyanine and rose Bengal. Journal of Physics and Chemistry of Solids, 2009, 70, 1422-1431.	4.0	4
351	Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 53-63.	3.9	56
352	Synthesis, photophysics of two new perylene bisimides and their photovoltaic performances in quasi solid state dye sensitized solar cells. Journal of Power Sources, 2009, 194, 1171-1179.	7.8	43
353	Photocurrent mechanism and photovoltaic properties of photo-electrochemical device based on PPAT and PPAT:TY blend. Synthetic Metals, 2009, 159, 52-61.	3.9	9
354	Dye sensitized solar cells (DSSCs) based on modified iron phthalocyanine nanostructured TiO2 electrode and PEDOT:PSS counter electrode. Synthetic Metals, 2009, 159, 1325-1331.	3.9	69
355	A Novel Alternating Phenylenevinylene Copolymer with Perylene Bisimide Units: Synthesis, Photophysical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2009, 113, 7904-7912.	3.1	95
356	Synthesis of perylene monoimide derivative and its use for quasi-solid-state dye-sensitized solar cells based on bare and modified nano-crystalline ZnO photoelectrodes. Energy and Environmental Science, 2009, 2, 1293.	30.8	24
357	Novel p-Phenylenevinylene Compounds Containing Thiophene or Anthracene Moieties and Cyanoâ^Vinylene Bonds for Photovoltaic Applications. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1711-1718.	8.0	36
358	Effect of the Incorporation of a Low-Band-Gap Small Molecule in a Conjugated Vinylene Copolymer: PCBM Blend for Organic Photovoltaic Devices. ACS Applied Materials & Devices, 2009, 1, 1370-1374.	8.0	38
359	Heck reaction on fullerene derivatives. Tetrahedron Letters, 2008, 49, 3656-3658.	1.4	6
360	Photoinduced Electron Transfer in Branched Bis(ferrocenylacetylene) ₆₀ Systems: Influence of the Nature of Conjugation. European Journal of Organic Chemistry, 2008, 2008, 3535-3543.	2.4	6

#	Article	IF	Citations
361	Optical, electrical and photovoltaic properties of thermally annealed PPHT:DDE blend thin films. Journal of Physics and Chemistry of Solids, 2008, 69, 2639-2651.	4.0	11
362	On the Thermal Stability of [60]Fullerene Cycloadducts:  Retro-Cycloaddition Reaction of 2-Pyrazolino[4,5:1,2][60]fullerenes. Journal of Organic Chemistry, 2008, 73, 3184-3188.	3.2	46
363	Oxidation of 3-Alkyl-Substituted 2-Pyrazolino[60]fullerenes: A New Formyl-Containing Building Block for Fullerene Chemistry. Organic Letters, 2008, 10, 3705-3708.	4.6	20
364	Injection and Recombination in Dye-Sensitized Solar Cells with a Broadband Absorbance Metal-Free Sensitizer Based on Oligothienylvinylene. Journal of Physical Chemistry C, 2008, 112, 18623-18627.	3.1	20
365	Charge transport and photocurrent generation in PPAT:ZnO bulk heterojunction photovoltaic devices. Synthetic Metals, 2008, 158, 400-410.	3.9	27
366	Charge conduction process and photoelectrical properties of Schottky barrier device based on sulphonated nickel phthalocyanine. Synthetic Metals, 2008, 158, 620-629.	3.9	15
367	Photovoltaic properties of liquid-state photoelectrochemical cells based on PPAT and a composite film of PPAT and nanocrystalline titanium dioxide. Synthetic Metals, 2008, 158, 509-515.	3.9	14
368	[60]Fullerene-based liquid crystals acting as acid-sensitive fluorescent probes. Chemical Communications, 2008, , 4590.	4.1	16
369	Heck reaction on single-walled carbon nanotubes. Synthesis and photochemical properties of a wall functionalized SWNT-anthracene derivative. Journal of Materials Chemistry, 2008, 18, 1592.	6.7	22
370	Nitration of Fullerene Derivatives under Mild Conditions. Synlett, 2007, 2007, 1051-1054.	1.8	1
371	Microwave Irradiation: An Important Tool to Functionalize Fullerenes and Carbon Nanotubes. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 766-782.	1.1	40
372	Photophysical Properties of the Newly Synthesized Triad Based on [70]Fullerene Studies with Laser Flash Photolysis. Journal of Physical Chemistry B, 2007, 111, 4335-4341.	2.6	11
373	High effectiveness of oligothienylenevinylene as molecular wires in Zn-porphyrin and C60 connected systems. Chemical Communications, 2007, , 4498.	4.1	40
374	Through-space communication in a TTF–C60–TTF triad. New Journal of Chemistry, 2007, 31, 230-236.	2.8	13
375	Synthesis and Photoinduced Intramolecular Processes of Fulleropyrrolidine–Oligothienylenevinylene–Ferrocene Triads. Chemistry - A European Journal, 2007, 13, 3924-3933.	3.3	33
376	Comparison between the Photophysical Properties of Pyrazolo- and Isoxazolo[60]fullerenes with Dual Donors (Ferrocene, Aniline and Alkoxyphenyl). European Journal of Organic Chemistry, 2007, 2007, 2175-2185.	2.4	18
377	The first synthesis of a conjugated hybrid of C60–fullerene and a single-wall carbon nanotube. Carbon, 2007, 45, 2250-2252.	10.3	60
378	Vibrational spectra of oligothienyl-vinylenes with donor-ï€-donor and donor-ï€-acceptor substitution patterns. Journal of Molecular Structure, 2007, 834-836, 374-379.	3.6	1

#	Article	IF	Citations
379	Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 2006, 128, 6626-6635.	13.7	194
380	Synthesis and photophysical properties of ruthenocene-[60]fullerene dyads. New Journal of Chemistry, 2006, 30, 93-101.	2.8	11
381	Synthesis and photophysical properties of a [60]fullerene compound with dimethylaniline and ferrocene connected through a pyrazolino group: a study by laser flash photolysis. Physical Chemistry Chemical Physics, 2006, 8, 4104-4111.	2.8	13
382	Pyrazolino [60] fullerenes: synthesis and Âproperties. Comptes Rendus Chimie, 2006, 9, 1058-1074.	0.5	18
383	Stoichiometry dependence of charge transport in polymer/methanofullerene and polymer/C70 derivative based solar cells. Organic Electronics, 2006, 7, 195-204.	2.6	44
384	Dendritic liquid-crystalline fullerene–ferrocene dyads. Tetrahedron, 2006, 62, 2115-2122.	1.9	50
385	Polymer solar cells with low-bandgap polymers blended with C70-derivative give photocurrent at 1 \hat{l} 4m. Thin Solid Films, 2006, 511-512, 576-580.	1.8	56
386	Electron Transfer in Nonpolar Solvents in Fullerodendrimers with Peripheral Ferrocene Units. Chemistry - A European Journal, 2006, 12, 5149-5157.	3.3	33
387	Synthesis and Photophysical Properties of a Pyrazolino[60]fullerene with Dimethylaniline Connected by an Acetylene Linkage. European Journal of Organic Chemistry, 2006, 2006, 2344-2351.	2.4	19
388	Synthesis and Photoinduced Intermolecular Electronic Acceptor Ability of Pyrazolo [60] fullerenes vs Tetrathiafulvalene. Bulletin of the Chemical Society of Japan, 2005, 78, 1500-1507.	3.2	15
389	Ruthenocene as a new donor fragment in [60]fullerene–donor dyads. Tetrahedron Letters, 2005, 46, 4781-4784.	1.4	20
390	Pyrazolino[60]fullerene-Oligophenylenevinylene Dumbbell-Shaped Arrays: Synthesis, Electrochemistry, Photophysics, and Self-Assembly on Surfaces. Chemistry - A European Journal, 2005, 11, 4405-4415.	3.3	45
391	Liquid-Crystalline [60]Fullerene-TTF Dyads. Organic Letters, 2005, 7, 383-386.	4.6	49
392	Photophysics, electrochemistry and structure of a pyrazolino [60] fullerene dendrimer in solid molecular films. Synthetic Metals, 2005, 148, 47-52.	3.9	8
393	Design, Synthesis and Properties of Low Band Gap Polyfluorenes for Photovoltaic Devices. Synthetic Metals, 2005, 154, 53-56.	3.9	90
394	Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Applied Physics Letters, 2004, 85, 5081-5083.	3.3	206
395	Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels–Alder cycloaddition. Chemical Communications, 2004, , 1734-1735.	4.1	149
396	A ready access to unprecedented N-anilinopyrazolino [60] fullerenes. Tetrahedron Letters, 2004, 45, 1651-1654.	1.4	18

#	Article	IF	CITATIONS
397	Dark, photoelectrical properties and impedance analysis of organic semiconductor based donor/acceptor device. Thin Solid Films, 2004, 467, 220-226.	1.8	15
398	Photovoltaic properties of Schottky device based on dye sensitized poly (3-phenyl azo methine) Tj ETQq0 0 0 rgB	T <u>/O</u> verloc	:k 10 Tf 50 7
399	Charge-carrier transport and photogeneration processes in pyronine (G) (PYR) sensitized-TiO2 photovoltaic device. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 110, 135-142.	3.5	5
400	Synthesis and photochemistry of soluble, pentyl ester-modified single wall carbon nanotube. Chemical Physics Letters, 2004, 386, 342-345.	2.6	51
401	Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube. Journal of Physical Chemistry B, 2004, 108, 12691-12697.	2.6	117
402	The Isoindazole Nucleus as a Donor in Fullerene-Based Dyads. Evidence for Electron Transfer. Journal of Organic Chemistry, 2004, 69, 2661-2668.	3.2	48
403	Optical properties and photoinduced processes in multicomponent architectures with oligophenylenevinylene units. Synthetic Metals, 2004, 147, 19-28.	3.9	11
404	Charge transfer and photogeneration process in device consisting of safranine O dye and TiO2 nano-particles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 100, 13-17.	3.5	19
405	Charge conduction mechanism and photovoltaic properties of 1,2-diazoamino diphenyl ethane (DDE) based schottky device. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 104, 15-25.	3.5	36
406	Charge conduction process and photovoltaic properties of a N,N[sup \hat{E}^1]-di-benzyl 4,4[sup \hat{E}^1] bipyridyl dichloride based Schottky device. Journal of Applied Physics, 2003, 94, 7692.	2.5	5
407	The importance of the linking bridge in donor–C60 electroactive dyads. New Journal of Chemistry, 2002, 26, 76-80.	2.8	20
408	Relation between charge transfer and solvent polarity in fullerene derivatives: NMR studiesElectronic supplementary information (ESI) available: Table S1: chemical shifts (ppm) in C6D6 (ETN = 0.111), CDCl3 (ETN = 0.259), and CD2Cl2 (ETN = 0.309). See http://www.rsc.org/suppdata/jm/b2/b203112b/. Journal of Materials Chemistry, 2002, 12, 2130-2136.	6.7	10
409	Photoinduced processes in fullerenopyrrolidine and fullerenopyrazoline derivatives substituted with an oligophenylenevinylene moietyElectronic supplementary information (ESI) available: synthetic procedures and full characterization of all new compounds. See http://www.rsc.org/suppdata/im/b2/b200432a/. Journal of Materials Chemistry, 2002, 12, 2077-2087.	6.7	91
410	Effect of 1,1?-dibenzyl-4,4?-bipyridyl dichloride (DBD) on charge-conduction process and photovoltaic response of a polypyrrole (PPy) thin-film device. Polymer International, 2002, 51, 281-288.	3.1	6
411	Synthesis and properties of pyrazolino [60] fullerene-donor systems. Tetrahedron, 2002, 58, 5821-5826.	1.9	47
412	Synthesis of dumbbell-shaped bis-(pyrazolino[60]fullerene)-oligophenylenevinylene derivatives. Tetrahedron Letters, 2002, 43, 7507-7511.	1.4	34
413	C60-Based Triads with Improved Electron-Acceptor Properties: Pyrazolylpyrazolino[60]fullerenesâ€. Journal of Organic Chemistry, 2001, 66, 5033-5041.	3.2	60
414	Electrical and impedance spectral characterisation of ITO/DAG/In device. Synthetic Metals, 2001, 123, 189-196.	3.9	25

#	Article	IF	Citations
415	Charge conduction process and photovoltaic effect in ITO/ArV/CHR/In p–n junction device. Synthetic Metals, 2001, 124, 399-405.	3.9	1
416	Synthesis, electrochemistry and photophysical properties of phenylenevinylene fullerodendrimers. Tetrahedron Letters, 2001, 42, 3435-3438.	1.4	56
417	Investigation of schottky barrier of poly(phenyl azo methane thiophene) using current–voltage and impedance spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 79, 146-153.	3.5	19
418	Title is missing!. Journal of Materials Science: Materials in Electronics, 2001, 12, 45-50.	2.2	5
419	Synthesis and Properties of Isoxazolo[60]fullereneâ^'Donor Dyadsâ€. Journal of Organic Chemistry, 2000, 65, 8675-8684.	3.2	62
420	Microwave irradiation in solvent-free conditions: an eco-friendly methodology to prepare indazoles, pyrazolopyridines and bipyrazoles by cycloaddition reactions. Green Chemistry, 2000, 2, 165-172.	9.0	59
421	Modification of Regioselectivity in Cycloadditions to C70under Microwave Irradiation. Journal of Organic Chemistry, 2000, 65, 2499-2507.	3.2	84
422	Synthesis of new C60î—,donor dyads by reaction of pyrazolylhydrazones with [60]fullerene under microwave irradiation. Tetrahedron Letters, 1999, 40, 1587-1590.	1.4	52
423	Electroactive 3′-(N-phenylpyrazolyl)isoxazoline[4′,5′:1,2][60]fullerene dyads. Tetrahedron Letters, 1999, 40, 4889-4892.	1.4	45
424	Title is missing!. Journal of Materials Science: Materials in Electronics, 1999, 10, 539-544.	2.2	3
425	Studies on electrical and photoelectrical behaviour of ITO/ArV/In Schottky barrier device. Synthetic Metals, 1999, 106, 97-105.	3.9	21
426	Photocarriers generation process and photovoltaic effect in PPHT thin film Schottky barrier devices. Synthetic Metals, 1999, 107, 197-202.	3.9	12
427	Title is missing!. Journal of Materials Science: Materials in Electronics, 1998, 9, 91-97.	2.2	2
428	Title is missing!. Journal of Materials Science: Materials in Electronics, 1998, 9, 9-15.	2.2	0
429	Efficient tautomerization hydrazone-azomethine imine under microwave irradiation. Synthesis of $[4,3\hat{a}\in^2]$ and $[5,3\hat{a}\in^2]$ bipyrazoles. Tetrahedron, 1998, 54, 13167-13180.	1.9	75
430	Solvent-free phase transfer catalysis under microwaves in fullerene chemistry. A convenient preparation of N-alkylpyrrolidino[60]fullerenes. Tetrahedron Letters, 1998, 39, 6053-6056.	1.4	55
431	Electrical, optical and photovoltaic effect in pyronine G (Y) based thin film sandwich devices. Thin Solid Films, 1998, 333, 176-184.	1.8	49
432	Characterization of ITOâ€"PPHTâ€"metal contacts (PPHT=poly(3-phenylhydrazone thiophene)) using electrical and capacitance measurements. Synthetic Metals, 1998, 95, 225-232.	3.9	10

#	Article	IF	CITATIONS
433	Thermal and Microwave-Assisted Synthesis of Dielsâ 'Alder Adducts of [60]Fullerene with 2,3-Pyrazinoquinodimethanes:Â Characterization and Electrochemical Properties. Journal of Organic Chemistry, 1997, 62, 3705-3710.	3.2	62
434	Characterization of Safranine O based thin-film sandwich devices by analysing their electrical and photoelectrical behaviour. Synthetic Metals, 1997, 88, 57-63.	3.9	10
435	ELECTRICAL AND PHOTOELECTRICAL PROPERTIES OF CHROMOTROPE 2R THIN FILM DEVICES, USING DIFFERENT ELECTRODES. Journal of Physics and Chemistry of Solids, 1997, 58, 195-205.	4.0	13
436	Charge conduction process and photovoltaic effects in thiazole yellow (TY) thin film based Schottky devices. Thin Solid Films, 1997, 310, 279-288.	1.8	16
437	Microwave irradiation: more than just a method for accelerating reactions. Contemporary Organic Synthesis, 1997, 4, 373-386.	1.5	216
438	Title is missing!. Journal of Materials Science: Materials in Electronics, 1997, 8, 47-55.	2.2	6
439	DC electrical and photovoltaic studies on Schottky barrier devices using the tetra aza difurazano decalin (TADFD) thin films. Physica B: Condensed Matter, 1997, 229, 394-403.	2.7	7
440	Cycloadditions to [60]fullerene using microwave irradiation: A convenient and expeditious procedure. Tetrahedron, 1997, 53, 2599-2608.	1.9	73
441	Effect of rare-earth doping on the electrical and photoelectrical properties of furazano [3,4-b] piperazine (FP) thin-film devices. Synthetic Metals, 1996, 80, 249-256.	3.9	6
442	Charge transport conduction mechanism and photovoltaic effect in 4,4′-diazophenyl-3:3′-diaminobenzidine (DAPDAB) thin-film devices. Synthetic Metals, 1996, 81, 15-22.	3.9	5
443	Electrical and photovoltaic effects in organic p-n junction solar cell using furfural resin (FR) and thiazole yellow (TY). Synthetic Metals, 1996, 83, 1-6.	3.9	12
444	Diels-Alder cycloaddition of vinylpyrazoles. Synergy between microwave irradiation and solvent-free conditions. Tetrahedron, 1996, 52, 9237-9248.	1.9	32
445	Silica gel catalysed Knoevenagel condensation in dry media under microwave irradiation. Tetrahedron Letters, 1996, 37, 1113-1116.	1.4	77
446	Electrical and photoelectrical properties of poly(phenyl azomethine furane) thin films devices. Thin Solid Films, 1996, 278, 129-134.	1.8	59
447	Influence of iodine on the electrical and photoelectrical properties of zinc phthalocyanine thin film devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 41, 222-227.	3.5	46
448	Investigation of Electrical and Photovoltaic Behaviour of Furfural Resin Thin Film Devices. Physica Status Solidi A, 1996, 158, 599-610.	1.7	7
449	Microwave Assisted Beckmann Rearrangement of Ketoximes in Dry Media. Synlett, 1995, 1995, 1259-1260.	1.8	72
450	Synthesis and Characterization of 11,11,12,12-Tetracyano-1,4-anthraquinodimethanes (1,4-TCAQs): Novel Electron Acceptors with Photoinduced Charge-Transfer Properties. Journal of Organic Chemistry, 1995, 60, 4077-4084.	3.2	20

#	Article	IF	Citations
451	Electrical and photoelectrical properties of Schottky barrier devices using the chloro aluminium phthalocyanines. Synthetic Metals, 1995, 74, 227-234.	3.9	38
452	Study on electrical and photoelectrical behaviour of undoped and doped furazano[3,4-b]piperazine (FP) thin-film devices. Synthetic Metals, 1995, 75, 201-207.	3.9	16
453	Facial Selectivity in Cycloadditions of a Chiral Ketene Acetal under Microwave Irradiation in Solvent-Free Conditions. Configurational Assignment of the Cycloadducts by NOESY Experiments and Molecular Mechanics Calculations. Journal of Organic Chemistry, 1995, 60, 4160-4166.	3.2	30
454	A Facile Formation of Electroactive Fullerene Adducts from Sultines via a Diels-Alder Reaction Tetrahedron Letters, 1995, 36, 8307-8310.	1.4	13
455	Syntheses, electrochemistry and molecular modeling of N,N′-dicyanoquinonediimine (DCNQI) derivatives of substituted 1,4-anthracenediones: precursors for organic metals Tetrahedron, 1993, 49, 4881-4892.	1.9	19
456	Investigations of materials and device structures for organic semiconductor solar cells. Optical Engineering, 1993, 32, 1921.	1.0	90
457	Extension of the aza-di- $i\in$ -methane reaction to stable derivatives. Photochemical cyclization of \hat{l}^2 , \hat{l}^3 -unsaturated oxime acetates. Journal of the Chemical Society Perkin Transactions 1, 1991, , 223-228.	0.9	18
458	Intramolecular electron transfer in the novel photoreaction of some \hat{l}^2 , \hat{l}^3 -unsaturated oxime \hat{l}^4 boron trifluoride complexes. A new synthetic path to dihydroisoxazoles. Journal of the Chemical Society Chemical Communications, 1990, , 123-125.	2.0	2
459	The aza-di-ï€-methane rearrangement of 1-aryl-4,4-dimethyl-6,6-diphenyl-2-azahexa-2,5-dienes. The influence of substituents on the N-benzyl group. Journal of the Chemical Society Perkin Transactions II, 1989, , 903-906.	0.9	12
460	Electrical properties of pure, doped and sensitized organic dye films. Thin Solid Films, 1988, 164, 249-253.	1.8	4
461	The Aza-di-ï€-methane rearrangement of O-acetyl 2,2-dimethyl-4,4-diphenylbut-3-enal oxime. Journal of the Chemical Society Chemical Communications, 1987, .	2.0	17
462	Substitution effects on the aza-di-ï€-methane rearrangement of imines. Journal of the Chemical Society Perkin Transactions II, 1987, , 1039-1042.	0.9	13
463	Studies on the scope of the aza-di- $i\in$ -methane rearrangement of \hat{l}^2 , \hat{l}^3 -unsaturated imines. Journal of the Chemical Society Perkin Transactions 1, 1987, , 743-746.	0.9	17
464	A new synthesis of 1,1-diphenyl-3-arylisoquinolin-4-ones by the novel cyclization of 2-azabuta-1,3-dienes Tetrahedron Letters, 1985, 26, 5213-5216.	1.4	7
465	Photovoltaic and rectification properties of SnO2/malachite green + crystal violet dye/copper system. Journal of Materials Science Letters, 1984, 3, 271-274.	0.5	2
466	Photovoltaic effect in sensitized crystal violet dyes. Journal of Materials Science Letters, 1983, 2, 433-436.	0.5	3
467	Electrical conduction mechanism in crystal violet dye sensitised with Agl. Journal Physics D: Applied Physics, 1983, 16, 1977-1983.	2.8	3
468	Fullerene-Rich Nanostructures. , 0, , 699-714.		O

#	Article	lF	CITATIONS
469	<i>meso</i> -Ethynyl-extended push–pull type porphyrins for near-infrared organic photodetectors. Journal of Materials Chemistry C, 0, , .	5.5	O