Peipei Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3217041/publications.pdf

Version: 2024-02-01

186265 223800 2,291 64 28 46 h-index citations g-index papers 66 66 66 2205 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrochemical Decarboxylative Cyclization of αâ€Aminoâ€Oxy Acids to Access Phenanthridine Derivatives. Chemistry - an Asian Journal, 2022, 17, .	3.3	10
2	Visible-light-induced dehydrogenative sulfonylation of tertiary amines under transition-metal- and photocatalyst-free conditions. Green Chemistry, 2022, 24, 1995-1999.	9.0	13
3	HOAc catalyzed three-component reaction for the synthesis of 3,3′-(arylmethylene)bis(1 <i>H</i> -indoles). Organic and Biomolecular Chemistry, 2022, , .	2.8	2
4	Phenanthrenequinone (PQ) catalyzed cross-dehydrogenative coupling of alkanes with quinoxalin- $2(1 < i > H < /i >)$ -ones and simple N-heteroarenes under visible light irradiation. Organic and Biomolecular Chemistry, 2022, 20, 2467-2472.	2.8	11
5	Microwaveâ€Accelerated Crossâ€Dehydrogenative Coupling of Quinoxalinâ€2(1 <i>H</i>)â€ones with Alkanes under Transitionâ€Metalâ€Free Conditions. ChemistrySelect, 2022, 7, .	1.5	3
6	Decarbonylative C3â \in Alkylation of Quinoxalinâ \in 2 $(1H)$ â \in Ones with Aliphatic Aldehydes via Photocatalysis. Advanced Synthesis and Catalysis, 2022, 364, 2660-2665.	4.3	12
7	Organic photoredox catalyzed C–H silylation of quinoxalinones or electron-deficient heteroarenes under ambient air conditions. Green Chemistry, 2021, 23, 314-319.	9.0	62
8	Electrochemical Oxidative C–H Thiocyanation or Selenocyanation of Imidazopyridines and Arenes. Synlett, 2021, 32, 267-272.	1.8	21
9	Synthesis of Oxygen- or Nitrogen-Containing Heterocyclic Compounds via Radical Addition Cascade Cyclization. Chinese Journal of Organic Chemistry, 2021, 41, 185.	1.3	13
10	Electrochemical Oxidative Regioselective Câ€"H Cyanation of Imidazo[1,2- <i>a</i>]pyridines. Journal of Organic Chemistry, 2021, 86, 15897-15905.	3.2	24
11	Electrochemical Oxidative Câ^H Cyanation of Quinoxalinâ€2(1 H)â€ones with TMSCN. European Journal of Organic Chemistry, 2021, 2021, 2193-2197.	2.4	12
12	Visible-Light-Induced C–H Bond Aminoalkylation of Heterocycles by the Decarboxylation Coupling of Amino Acids. Organic Letters, 2021, 23, 5906-5910.	4.6	18
13	Oneâ€Pot Synthesis of C3â€Alkylated Imidazopyridines from αâ€Bromocarbonyls under Photoredox Conditions. European Journal of Organic Chemistry, 2021, 2021, 4541-4545.	2.4	10
14	Electrochemical Oxidative Difunctionalization of Alkenes to Access α-Oxygenated Ketones. Journal of Organic Chemistry, 2021, 86, 13711-13719.	3.2	12
15	Electrochemical Difunctionalization of Alkenes by a Fourâ€Component Reaction Cascade Mumm Rearrangement: Rapid Access to Functionalized Imides. Angewandte Chemie - International Edition, 2020, 59, 3465-3469.	13.8	51
16	Electrochemical Difunctionalization of Alkenes by a Fourâ€Component Reaction Cascade Mumm Rearrangement: Rapid Access to Functionalized Imides. Angewandte Chemie, 2020, 132, 3493-3497.	2.0	11
17	Iron-mediated deuterium addition cascade cyano insertion/cyclization of <i>N</i> -arylacrylamides to access deuterium-labelled phenanthridines. Organic and Biomolecular Chemistry, 2020, 18, 6126-6133.	2.8	9
18	Selective C-5 Oxidative Radical Silylation of Imidazopyridines Promoted by Lewis Acid. Organic Letters, 2020, 22, 6304-6307.	4.6	35

#	Article	IF	CITATIONS
19	Visible Light-Induced Radical Addition/Annulation to Construct Phenylsulfonyl-Functionalized Dihydrobenzofurans Involving an Intramolecular 1,5-Hydrogen Atom Transfer Process. Organic Letters, 2020, 22, 8774-8779.	4.6	33
20	Mild and Regioselective Threeâ€component Heteroarylationâ€Nitration of Alkenes with Imidazo[1,2â€ <i>a</i>]pyridines and <i>tert</i> â€Butyl Nitrite. Advanced Synthesis and Catalysis, 2020, 362, 2173-2177.	4.3	22
21	BPO-promoted direct oxidative C–H functionalization of unactivated alkanes into 6-alkyl-6 <i>H</i> -benzo[<i>c</i> -gchromenes under transition-metal-free conditions. Organic and Biomolecular Chemistry, 2019, 17, 7715-7722.	2.8	15
22	TBHP/KI-Promoted Annulation of Anilines, Ethers, and Elemental Sulfur: Access to 2-Aryl-, 2-Heteroaryl-, or 2-Alkyl-Substituted Benzothiazoles. Journal of Organic Chemistry, 2019, 84, 12596-12605.	3.2	31
23	Photoredox-Catalyzed Radical Cascade Reaction To Synthesize Fluorinated Pyrrolo[1,2- <i>d</i>)benzodiazepine Derivatives. Journal of Organic Chemistry, 2019, 84, 9322-9329.	3.2	19
24	Electrochemical Oxidative Crossâ€Coupling Reaction to Access Unsymmetrical Thiosulfonates and Selenosulfonates. Advanced Synthesis and Catalysis, 2019, 361, 2014-2019.	4.3	30
25	An Approach to Quinoline-Fused Imidazopyridines via CDC of Ethers with Imidazopyridines under Metal-Free Conditions. Journal of Organic Chemistry, 2019, 84, 16346-16354.	3.2	14
26	Annulation of 1-(2-Aminoaryl)pyrroles, Ethers with Elemental Sulfur To Give 1,3,6-Benzothiadiazepine Derivatives through Double Câ \in "S Bond Formation and Câ \in "O Cleavage of Ethers. Journal of Organic Chemistry, 2019, 84, 2191-2199.	3.2	21
27	Visible-Light-Mediated Decarboxylative Alkylation Cascade Cyano Insertion/Cyclization of $\langle i \rangle N \langle i \rangle$ -Arylacrylamides under Transition-Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 1654-1660.	3.2	45
28	Photoredox-catalyzed cascade addition/cyclization of <i>N</i> -propargyl aromatic amines: access to 3-difluoroacetylated or 3-fluoroacetylated quinolines. Organic Chemistry Frontiers, 2018, 5, 19-23.	4.5	28
29	Synthesis of trifluoroalkyl or difluoroalkyl phenanthridine derivatives <i>via</i> cascade reaction using an intramolecular cyano group as a radical acceptor under photoredox catalysis. Organic and Biomolecular Chemistry, 2018, 16, 414-423.	2.8	50
30	Construction of a $4 < i > H < / i > -pyrido [4,3,2 < i > gh < / i >] phenanthridin-5(6 < i > H < / i >)-one skeleton < i > via < / i > a catalyst-free radical cascade addition/cyclization using azo compounds as radical sources. Organic Chemistry Frontiers, 2018, 5, 793-796.$	4.5	28
31	Silyl radical initiated radical cascade addition/cyclization: synthesis of silyl functionalized 4 <i>H</i> -pyrido[4,3,2- <i>gh</i>]phenanthridin-5(6 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2018, 16, 9223-9229.	2.8	25
32	Synthesis of 6-Fluoroalkyl 6 <i>H</i> -Benzo[<i>c</i>]chromenes via Visible-Light-Promoted Radical Addition/Cyclization of Biaryl Vinyl Ethers. Journal of Organic Chemistry, 2018, 83, 6151-6161.	3.2	30
33	Radical Addition Cascade Cyclization of 1,6-Enynes with DMSO To Access Methylsulfonylated and Carbonylated Benzofurans under Transition-Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 9344-9352.	3.2	60
34	Addition of nitrogen dioxide to carbon–carbon double bond followed by a cyclization to construct nitromethylated isoquinolinediones. Organic and Biomolecular Chemistry, 2017, 15, 1821-1827.	2.8	29
35	Visible-Light-Induced Regioselective Cyanomethylation of Imidazopyridines and Its Application in Drug Synthesis. Journal of Organic Chemistry, 2017, 82, 5391-5397.	3.2	71
36	Visible-light-mediated C3-azolylation of imidazo[1,2-a]pyridines with 2-bromoazoles. Organic and Biomolecular Chemistry, 2017, 15, 5318-5324.	2.8	19

#	Article	IF	Citations
37	Visible light-induced C3-sulfonamidation of imidazopyridines with sulfamides. Organic and Biomolecular Chemistry, 2017, 15, 8102-8109.	2.8	24
38	Radical Addition/Insertion/Cyclization Cascade Reaction To Assemble Phenanthridines from <i>N</i> -Arylacrylamide Using Cyano as a Bridge under Photoredox Catalysis. Journal of Organic Chemistry, 2017, 82, 8148-8156.	3.2	51
39	Photoredox Catalysis: Construction of Polyheterocycles via Alkoxycarbonylation/Addition/Cyclization Sequence. Organic Letters, 2017, 19, 3580-3583.	4.6	92
40	Synthesis of 1,2-Diketones via a Metal-Free, Visible-Light-Induced Aerobic Photooxidation of Alkynes. Journal of Organic Chemistry, 2016, 81, 7256-7261.	3.2	77
41	Visible light-promoted synthesis of 4-(sulfonylmethyl)isoquinoline-1,3(2H,4H)-diones via a tandem radical cyclization and sulfonylation reaction. Organic and Biomolecular Chemistry, 2016, 14, 9416-9422.	2.8	52
42	Transition metal-free decarboxylative alkylation reactions. Organic and Biomolecular Chemistry, 2016, 14, 10763-10777.	2.8	74
43	Cyanomethylation and Cyclization of Aryl Alkynoates with Acetonitrile under Transition-Metal-Free Conditions: Synthesis of 3-Cyanomethylated Coumarins. Journal of Organic Chemistry, 2016, 81, 11489-11495.	3.2	63
44	Synthesis of symmetrical methylene-bridged imidazoheterocycles using DMSO as methylene source under metal-free conditions. Organic and Biomolecular Chemistry, 2016, 14, 6523-6530.	2.8	55
45	Iron-Catalyzed Regioselective Alkoxycarbonylation of Imidazoheterocycles with Carbazates. Journal of Organic Chemistry, 2016, 81, 2482-2487.	3.2	67
46	Peroxide promoted tunable decarboxylative alkylation of cinnamic acids to form alkenes or ketones under metal-free conditions. Chemical Communications, 2015, 51, 7546-7549.	4.1	56
47	Regioselective Fluorination of Imidazo[1,2- <i>a</i>]pyridines with Selectfluor in Aqueous Condition. Journal of Organic Chemistry, 2015, 80, 11559-11565.	3.2	91
48	Highly regioselective para-methylthiolation/bridging methylenation of arylamines promoted by NH ₄ 1. Organic and Biomolecular Chemistry, 2015, 13, 9742-9745.	2.8	38
49	Rhodium(III)-Catalyzed Direct Cyanation of Aromatic C–H Bond to Form 2-(Alkylamino)benzonitriles Using <i>N</i> -Nitroso As Directing Group. Journal of Organic Chemistry, 2015, 80, 12588-12593.	3.2	57
50	Syntheses of Sulfides and Selenides through Direct Oxidative Functionalization of C(sp ³)â€"H Bond. Organic Letters, 2014, 16, 3032-3035.	4.6	111
51	A new strategy to construct metal–organic frameworks with ultrahigh chemical stability. CrystEngComm, 2014, 16, 8656-8659.	2.6	18
52	Palladium-Catalyzed Direct <i>Ortho</i> -Nitration of Azoarenes Using NO ₂ as Nitro Source. Organic Letters, 2014, 16, 4540-4542.	4.6	81
53	Syntheses of amides via iodine-catalyzed multiple sp3 C-H bonds oxidation of methylarenes and sequential coupling with N,N-dialkylformamides. Science China Chemistry, 2014, 57, 1176-1182.	8.2	14
54	Palladium catalyzed direct ortho C–H acylation of 2-arylpyridines using toluene derivatives as acylation reagents. RSC Advances, 2013, 3, 1679-1682.	3.6	51

#	Article	IF	CITATIONS
55	A facile preparation of palladium nanoparticles supported on magnetite/s-graphene and their catalytic application in Suzuki–Miyaura reaction. Catalysis Science and Technology, 2012, 2, 2332.	4.1	99
56	Small-sized Ag nanocrystals: high yield synthesis in a solid–liquid phase system, growth mechanism and their successful application in the Sonogashira reaction. RSC Advances, 2012, 2, 6061.	3.6	6
57	<i>ortho</i> â€Olefination of Arylaldehyde <i>O</i> â€Methyloximes through Palladiumâ€Catalyzed C–H Activation. European Journal of Organic Chemistry, 2012, 2012, 3069-3073.	2.4	19
58	Optical properties of a series of monosilyleneâ€"oligothienylene copolymers and the application to light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 1902-1906.	6.7	6
59	<i>Inâ€situ</i> Apparent Mobility of Charge Carriers in Polyaniline Films Measured with a New Fourâ€band Electrode. Chinese Journal of Chemistry, 2010, 28, 916-920.	4.9	3
60	A facile synthesis of PdCo bimetallic hollow nanospheres and their application to Sonogashira reaction in aqueous media. New Journal of Chemistry, 2006, 30, 832.	2.8	71
61	The convenient synthesis of benzimidazole derivatives catalyzed by I ₂ in aqueous media. Journal of Heterocyclic Chemistry, 2006, 43, 773-775.	2.6	47
62	Gallium Triiodide–Catalyzed Organic Reaction: A Convenient Procedure for the Synthesis of Coumarins. Synthetic Communications, 2005, 35, 1875-1880.	2.1	18
63	Gallium Triiodide Catalyzed Organic Reaction: A Convenient Synthesis of αâ€Amino Phosphonates. Synthetic Communications, 2004, 34, 4293-4299.	2.1	47
64	Electrochemical Oxidative C–H Thiocyanation or Selenocyanation of Imidazopyridines and Arenes. Synlett, 0, 32, .	1.8	O