
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3214741/publications.pdf Version: 2024-02-01

Ηγίιν Μ.Υλνις

#	Article	IF	CITATIONS
1	Assessing the effects of temperature on the population of <i>Aedes aegypti</i> , the vector of dengue. Epidemiology and Infection, 2009, 137, 1188-1202.	2.1	358
2	Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Mathematical Biosciences, 2005, 198, 132-147.	1.9	115
3	Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Mathematical Biosciences, 2010, 223, 12-23.	1.9	105
4	Mathematical models for the dispersal dynamics: travelling waves by wing and wind. Bulletin of Mathematical Biology, 2005, 67, 509-528.	1.9	96
5	Assessing the effects of temperature on dengue transmission. Epidemiology and Infection, 2009, 137, 1179-1187.	2.1	86
6	Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector). Revista De Saude Publica, 2000, 34, 223-231.	1.7	75
7	Assessing the effects of vector control on dengue transmission. Applied Mathematics and Computation, 2008, 198, 401-413.	2.2	74
8	Describing the geographic spread of dengue disease by traveling waves. Mathematical Biosciences, 2008, 215, 64-77.	1.9	68
9	The basic reproduction number obtained from Jacobian and next generation matrices – A case study of dengue transmission modelling. BioSystems, 2014, 126, 52-75.	2.0	66
10	Spatial spreading of West Nile Virus described by traveling waves. Journal of Theoretical Biology, 2009, 258, 403-417.	1.7	65
11	Assessing the Efficacy of a Mixed Vaccination Strategy against Rubella in São Paulo, Brazil. International Journal of Epidemiology, 1995, 24, 842-850.	1.9	60
12	Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings. BioSystems, 2011, 103, 360-371.	2.0	59
13	Rubella seroepidemiology in a non-immunized population of São Paulo State, Brazil. Epidemiology and Infection, 1994, 113, 161-173.	2.1	55
14	A model-based design of a vaccination strategy against rubella in a non-immunized community of São Paulo State, Brazil. Epidemiology and Infection, 1994, 112, 579-594.	2.1	54
15	Modeling and simulating the evolution of resistance against antibiotics. International Journal of Bio-medical Computing, 1993, 33, 65-81.	0.5	49
16	The basic reproduction ratio of HIV among intravenous drug users. Mathematical Biosciences, 1994, 123, 227-247.	1.9	36
17	Assessing the effects of global warming and local social and economic conditions on the malaria transmission. Revista De Saude Publica, 2000, 34, 214-222.	1.7	33
18	A mathematical model for malaria transmission relating global warming and local socioeconomic conditions. Revista De Saude Publica, 2001, 35, 224-231.	1.7	30

#	Article	IF	CITATIONS
19	ASSESSING THE EFFECTS OF TEMPERATURE AND DENGUE VIRUS LOAD ON DENGUE TRANSMISSION. Journal of Biological Systems, 2015, 23, 1550027.	1.4	30
20	Fitting the Incidence Data from the City of Campinas, Brazil, Based on Dengue Transmission Modellings Considering Time-Dependent Entomological Parameters. PLoS ONE, 2016, 11, e0152186.	2.5	27
21	The transovarial transmission in the dynamics of dengue infection: Epidemiological implications and thresholds. Mathematical Biosciences, 2017, 286, 1-15.	1.9	26
22	ASSESSING THE SUITABILITY OF STERILE INSECT TECHNIQUE APPLIED TO <i>AEDES AEGYPTI</i> . Journal of Biological Systems, 2008, 16, 565-577.	1.4	25
23	Mathematical modeling of the transmission of SARS-CoV-2—Evaluating the impact of isolation in São Paulo State (Brazil) and lockdown in Spain associated with protective measures on the epidemic of CoViD-19. PLoS ONE, 2021, 16, e0252271.	2.5	25
24	Modelling congenital transmission of Chagas' disease. BioSystems, 2010, 99, 215-222.	2.0	22
25	Modelling Vaccination Strategy Against Directly Transmitted Diseases Using a Series of Pulses. Journal of Biological Systems, 1998, 06, 187-212.	1.4	20
26	Proof of conjecture in: The basic reproduction number obtained from Jacobian and next generation matrices—A case study of dengue transmission modelling. Applied Mathematics and Computation, 2015, 265, 103-107.	2.2	19
27	A simple mathematical model to describe antibody-dependent enhancement in heterologous secondary infection in dengue. Mathematical Medicine and Biology, 2019, 36, 411-438.	1.2	19
28	Biological view of vaccination described by mathematical modellings: from rubella to dengue vaccines. Mathematical Biosciences and Engineering, 2019, 16, 3195-3214.	1.9	19
29	Effects of vaccination programmes on transmission rates of infections and related threshold conditions for control. Mathematical Medicine and Biology, 1993, 10, 187-206.	1.2	18
30	An Approach to Estimating the Transmission Coefficients for AIDS and for Tuberculosis Using Mathematical Models. Systems Analysis Modelling Simulation, 2003, 43, 423-442.	0.1	17
31	Directly transmitted infections modeling considering an age-structured contact rate. Mathematical and Computer Modelling, 1999, 29, 39-48.	2.0	16
32	Modeling directly transmitted infections in a routinely vaccinated population – the force of infection described by a Volterra integral equation. Applied Mathematics and Computation, 2001, 122, 27-58.	2.2	16
33	Assessing the effects of multiple infections and long latency in the dynamics of tuberculosis. Theoretical Biology and Medical Modelling, 2010, 7, 41.	2.1	16
34	Mathematical modeling of solid cancer growth with angiogenesis. Theoretical Biology and Medical Modelling, 2012, 9, 2.	2.1	16
35	Computer-assisted rheological evaluation of microsamples of mucus. Computer Methods and Programs in Biomedicine, 1992, 39, 51-60.	4.7	15
36	Directly transmitted infections modeling considering an age-structured contact rate-epidemiological analysis. Mathematical and Computer Modelling, 1999, 29, 11-30.	2.0	15

#	Article	IF	CITATIONS
37	THE ATTRACTING BASINS AND THE ASSESSMENT OF THE TRANSMISSION COEFFICIENTS FOR HIV AND M. TUBERCULOSIS INFECTIONS AMONG WOMEN INMATES. Journal of Biological Systems, 2002, 10, 61-83.	1.4	15
38	An Optimal Control Approach to HIV Immunology. Applied Mathematics, 2015, 06, 1115-1130.	0.4	15
39	Comparison between schistosomiasis transmission modelings considering acquired immunity and age-structured contact pattern with infested water. Mathematical Biosciences, 2003, 184, 1-26.	1.9	13
40	Modelling parasitism and predation of mosquitoes by water mites. Journal of Mathematical Biology, 2006, 53, 540-555.	1.9	13
41	Mathematical model describing CoViD-19 in São Paulo, Brazil – evaluating isolation as control mechanism and forecasting epidemiological scenarios of release. Epidemiology and Infection, 2020, 148, e155.	2.1	13
42	Mathematical model of the immune response to dengue virus. Journal of Applied Mathematics and Computing, 2020, 63, 455-478.	2.5	13
43	Acquired Immunity on a Schistosomiasis Transmission Model — Fitting The Data. Journal of Theoretical Biology, 1997, 188, 495-506.	1.7	12
44	Assessing the Influence of Quiescence Eggs on the Dynamics of Mosquito <i>Aedes aegypti</i> . Applied Mathematics, 2014, 05, 2696-2711.	0.4	12
45	The Loss of Immunity in Directly Transmitted Infection Modeling: Effects on the Epidemiological Parameters. Bulletin of Mathematical Biology, 1998, 60, 355-372.	1.9	11
46	A population model applied to HIV transmission considering protection and treatment. Mathematical Medicine and Biology, 1999, 16, 237-259.	1.2	11
47	Controlling Dispersal Dynamics of Aedes aegypti. Mathematical Population Studies, 2006, 13, 215-236.	2.2	11
48	Transmission of Tuberculosis with Exogenous Re-infection and Endogenous Reactivation. Mathematical Population Studies, 2006, 13, 181-203.	2.2	10
49	Dynamic of West Nile Virus transmission considering several coexisting avian populations. Mathematical and Computer Modelling, 2011, 53, 1247-1260.	2.0	10
50	An ecological resilience perspective on cancer: Insights from a toy model. Ecological Complexity, 2017, 30, 34-46.	2.9	10
51	Theoretical assessment of the relative incidences of sensitive andresistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences and Engineering, 2014, 11, 971-993.	1.9	10
52	Modelling the effects of temporary immune protection and vaccination against infectious diseases. Applied Mathematics and Computation, 2007, 189, 1723-1736.	2.2	9
53	MODELLING AGE-DEPENDENT TRANSMISSION RATES FOR CHILDHOOD INFECTIONS. Journal of Biological Systems, 1995, 03, 803-812.	1.4	8
54	Acquired Immunity of a Schistosomiasis Transmission Model—Analysis of the Stabilizing Effects. Journal of Theoretical Biology, 1999, 196, 473-482.	1.7	7

#	Article	IF	CITATIONS
55	Modeling the emergence of HIV-1 drug resistance resulting from antiretroviral therapy: Insights from theoretical and numerical studies. BioSystems, 2012, 108, 1-13.	2.0	7
56	Optimization of the <i>Aedes aegypti</i> Control Strategies for Integrated Vector Management. Journal of Applied Mathematics, 2015, 2015, 1-8.	0.9	7
57	MODELING VACCINE PREVENTABLE VECTOR-BORNE INFECTIONS: YELLOW FEVER AS A CASE STUDY. Journal of Biological Systems, 2016, 24, 193-216.	1.4	7
58	The stabilizing effects of the acquired immunity on the schistosomiasis transmission modeling - the sensitivity Analysis. Memorias Do Instituto Oswaldo Cruz, 1998, 93, 63-73.	1.6	6
59	Mathematical Model of Interaction Between Bacteriocin-Producing Lactic Acid Bacteria and Listeria. Part 1: Steady States and Thresholds. Bulletin of Mathematical Biology, 2017, 79, 1637-1661.	1.9	5
60	Mathematical Model of Interaction Between Bacteriocin-Producing Lactic Acid Bacteria and Listeria. Part 2: Bifurcations and Applications. Bulletin of Mathematical Biology, 2017, 79, 2273-2301.	1.9	5
61	Modeling the transmission of the new coronavirus in São Paulo State, Brazil—assessing the epidemiological impacts of isolating young and elder persons. Mathematical Medicine and Biology, 2021, 38, 137-177.	1.2	5
62	Abiotic Effects on Population Dynamics of Mosquitoes and Their Influence on Dengue Transmission. , 2014, , 39-79.		5
63	The serorevertion and the survival related to HIV infection among children: Statistical modeling applied to retrospective data collection. Mathematical and Computer Modelling, 2003, 38, 251-267.	2.0	4
64	Variability Modeling of Rainfall, Deforestation, and Incidence of American Tegumentary Leishmaniasis in Orán, Argentina, 1985–2007. Interdisciplinary Perspectives on Infectious Diseases, 2014, 2014, 1-11.	1.4	4
65	Contagious Criminal Career Models Showing Backward Bifurcations: Implications for Crime Control Policies. Journal of Applied Mathematics, 2018, 2018, 1-16.	0.9	4
66	The effects of re-infection in directly transmitted infections modelled with vaccination. Mathematical Medicine and Biology, 2002, 19, 113-135.	1.2	3
67	A MATHEMATICAL MODEL TO ASSESS THE IMMUNE RESPONSE AGAINSTTRYPANOSOMA CRUZIINFECTION. Journal of Biological Systems, 2015, 23, 131-163.	1.4	3
68	A model for yellow fever with migration. Computational and Mathematical Methods, 2019, 1, e1059.	0.8	3
69	ARE THE BEGINNING AND ENDING PHASES OF EPIDEMICS CHARACTERIZED BY THE NEXT GENERATION MATRICES? – A CASE STUDY OF DRUG-SENSITIVE AND RESISTANT TUBERCULOSIS MODEL. Journal of Biological Systems, 2021, 29, 719-740.	1.4	3
70	The Assessment of the Arising of Food Allergy among Antiacid Users Using Mathematical Model. Applied Mathematics, 2012, 03, 293-307.	0.4	3
71	Evaluating the impacts of relaxation and mutation in the SARS-CoV-2 on the COVID-19 epidemic based on a mathematical model: a case study of São Paulo State (Brazil). Computational and Applied Mathematics, 2021, 40, 1.	2.2	3
72	The basic reproduction ratio for a model of directly transmitted infections considering the virus charge and the immunological response. Ima Journal of Mathemathics Applied in Medicine and Biology, 2000, 17, 15-31.	0.0	3

#	Article	IF	CITATIONS
73	Non-linear analysis of the rhythmic activity in rodent brains. Mathematical Biosciences, 1999, 157, 287-302.	1.9	2
74	A MODEL FOR OPTIMAL CHEMICAL CONTROL OF LEAF AREA DAMAGED BY FUNGI POPULATION — PARAMETER DEPENDENCE. Journal of Biological Systems, 2004, 12, 105-122.	1.4	2
75	Simple deterministic models and applications. Physics of Life Reviews, 2015, 15, 35-36.	2.8	2
76	Modeling dynamics for oncogenesis encompassing mutations and genetic instability. Mathematical Medicine and Biology, 2019, 36, 241-267.	1.2	2
77	A mathematical model to evaluate the role of memory B and T cells in heterologous secondary dengue infection. Journal of Theoretical Biology, 2022, 534, 110961.	1.7	2
78	OUP accepted manuscript. Mathematical Medicine and Biology, 2022, , .	1.2	2
79	Global warming and socioeconomic conditionsComment on "Modeling the impact of global warming on vector-borne infections―by Eduardo Massad, Francisco Antonio Bezerra Coutinho, Luiz Fernandes Lopez and Daniel Rodrigues da Silva. Physics of Life Reviews, 2011, 8, 200-1; discussion 206-7.	2.8	1
80	A model for interactions between immune cells and HIV considering drug treatments. Computational and Applied Mathematics, 2018, 37, 282-295.	1.3	1
81	Global dynamics of humoral and cellular immune responses to virus infection. Universitas Scientiarum, 2019, 24, 407-423.	0.4	1
82	A population model applied to HIV transmission considering protection and treatment. Ima Journal of Mathemathics Applied in Medicine and Biology, 1999, 16, O: 099 M: I: 515.	0.0	1
83	The effects of re-infection in directly transmitted infections modelled with vaccination. Ima Journal of Mathemathics Applied in Medicine and Biology, 2002, 19, 113-35.	0.0	1
84	A Mathematical Model of Antiretroviral Therapy Evaluation for HIV Type 1. , 2009, , .		0
85	How Do Bird Migrations Propagate the West Nile virus. Mathematical Population Studies, 2013, 20, 192-207.	2.2	0
86	Comparison between chikungunya and dengue viruses transmission based on a mathematical model. International Journal of Biomathematics, 2017, 10, 1750087.	2.9	0
87	Assessing the effects of diagnostic sensitivity on schistosomiasis dynamics. Journal of Theoretical Biology, 2021, 523, 110727.	1.7	0
88	The basic reproduction ratio for a model of directly transmitted infections considering the virus charge and the immunological response. IMA Journal of Mathematical Control and Information, 2000, 17, 15-31.	1.7	0
89	ASSESSING THE SPATIAL PROPAGATION OF WEST NILE VIRUS. , 2008, , .		0
90	Modelagem matemática da imunologia de hiv: estudo das células de defesa ativada. , 0, , .		0

Modelagem matem $\tilde{A}_i tica$ da imunologia de hiv: estudo das c \tilde{A} ©lulas de defesa ativada. , 0, , . 90

6