
Geraldine Sarret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3213791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing implications of nanoplastics exposure to plants with advanced nanometrology techniques. Journal of Hazardous Materials, 2022, 430, 128356.	12.4	20
2	Distinguishing Engineered TiO ₂ Nanomaterials from Natural Ti Nanomaterials in Soil Using spICP-TOFMS and Machine Learning. Environmental Science & Technology, 2022, 56, 2990-3001.	10.0	19
3	Comment on "Speciation and fate of toxic cadmium in contaminated paddy soils and rice using XANES/EXAFS spectroscopy― Journal of Hazardous Materials, 2021, 401, 123240.	12.4	2
4	Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation. Environmental Pollution, 2021, 269, 115934.	7.5	52
5	A Critical Review on the Impacts of Nanoplastics and Microplastics on Aquatic and Terrestrial Photosynthetic Organisms. Small, 2021, 17, e2005834.	10.0	99
6	Changes of Cadmium Storage Forms and Isotope Ratios in Rice During Grain Filling. Frontiers in Plant Science, 2021, 12, 645150.	3.6	22
7	Theoretical isotope fractionation of cadmium during complexation with organic ligands. Chemical Geology, 2021, 571, 120178.	3.3	28
8	Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of the Total Environment, 2021, 781, 146779.	8.0	43
9	In Situ Formation of Silver Nanoparticles (Ag-NPs) onto Textile Fibers. ACS Omega, 2021, 6, 1316-1327.	3.5	37
10	Extreme Arsenic Bioaccumulation Factor Variability in Lake Titicaca, Bolivia. Scientific Reports, 2019, 9, 10626.	3.3	14
11	Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact, 2019, 14, 100168.	4.5	29
12	Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle study. Journal of Hazardous Materials, 2019, 369, 191-198.	12.4	41
13	Impact of a Model Soil Microorganism and of Its Secretome on the Fate of Silver Nanoparticles. Environmental Science & Technology, 2018, 52, 71-78.	10.0	21
14	Searching for relevant criteria to distinguish natural <i>vs.</i> anthropogenic TiO ₂ nanoparticles in soils. Environmental Science: Nano, 2018, 5, 2853-2863.	4.3	30
15	Algal Bloom Exacerbates Hydrogen Sulfide and Methylmercury Contamination in the Emblematic High-Altitude Lake Titicaca. Geosciences (Switzerland), 2018, 8, 438.	2.2	27
16	The poly-gamma-glutamate of Bacillus subtilis interacts specifically with silver nanoparticles. PLoS ONE, 2018, 13, e0197501.	2.5	8
17	Silver Nanoparticles and Wheat Roots: A Complex Interplay. Environmental Science & Technology, 2017, 51, 5774-5782.	10.0	93
18	Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environmental Pollution, 2017, 227, 83-88.	7.5	34

GERALDINE SARRET

#	Article	IF	CITATIONS
19	Zn Speciation and Stable Isotope Fractionation in a Contaminated Urban Wetland Soil– <i>Typha latifolia</i> System. Environmental Science & Technology, 2017, 51, 8350-8358.	10.0	26
20	Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy. Environmental Pollution, 2017, 231, 1322-1329.	7.5	54
21	Practical review on the use of synchrotron based micro- and nano- X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiology and Biochemistry, 2017, 110, 13-32.	5.8	140
22	Lead Highly Available in Soils Centuries after Metallurgical Activities. Journal of Environmental Quality, 2017, 46, 1236-1242.	2.0	14
23	Is Tillandsia capillaris an efficient bioindicator of atmospheric metal and metalloid deposition? Insights from five months of monitoring in an urban mining area. Ecological Indicators, 2016, 67, 227-237.	6.3	16
24	Fate of Ag-NPs in Sewage Sludge after Application on Agricultural Soils. Environmental Science & Technology, 2016, 50, 1759-1768.	10.0	151
25	Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 119, 17-24.	2.9	43
26	Phytoavailability of lead altered by two Pelargonium cultivars grown on contrasting lead-spiked soils. Journal of Soils and Sediments, 2016, 16, 581-591.	3.0	38
27	Transformation of Silver Nanoparticles in Sewage Sludge during Incineration. Environmental Science & Technology, 2016, 50, 3503-3510.	10.0	66
28	Xanthan Exopolysaccharide: Cu ²⁺ Complexes Affected from the pH-Dependent Conformational State; Implications for Environmentally Relevant Biopolymers. Environmental Science & Technology, 2016, 50, 3477-3485.	10.0	12
29	Fate of cadmium in the rhizosphere of Arabidopsis halleri grown in a contaminated dredged sediment. Science of the Total Environment, 2015, 536, 468-480.	8.0	16
30	Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicology Letters, 2015, 238, 1-6.	0.8	69
31	Dynamics of Zn in an urban wetland soil–plant system: Coupling isotopic and EXAFS approaches. Geochimica Et Cosmochimica Acta, 2015, 160, 55-69.	3.9	47
32	Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques. Journal of Experimental Botany, 2015, 66, 3201-3214.	4.8	86
33	Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging. Geochimica Et Cosmochimica Acta, 2015, 159, 61-79.	3.9	60
34	Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1. Journal of Biological Chemistry, 2014, 289, 31765-31776.	3.4	29
35	Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials, 2014, 264, 98-106.	12.4	335
36	Metal sensing and signal transduction by CnrX from Cupriavidus metallidurans CH34: role of the only methionine assessed by a functional, spectroscopic, and theoretical study. Metallomics, 2014, 6, 263-273.	2.4	21

GERALDINE SARRET

#	Article	IF	CITATIONS
37	Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves. Science of the Total Environment, 2014, 476-477, 667-676.	8.0	93
38	Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. Journal of Hazardous Materials, 2014, 273, 17-26.	12.4	199
39	Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble,) Tj ETQq1 1 0.7	34314 rgB 8.0	T <u>(O</u> verlock) 52
40	Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecological Indicators, 2012, 13, 178-183.	6.3	59
41	Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environmental and Experimental Botany, 2012, 82, 54-65.	4.2	106
42	Spectroscopic Characterization of the Metal-Binding Sites in the Periplasmic Metal-Sensor Domain of CnrX from <i>Cupriavidus metallidurans</i> CH34. Biochemistry, 2011, 50, 9036-9045.	2.5	10
43	Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environmental Science & Technology, 2010, 44, 1036-1042.	10.0	342
44	Evidence for Conformational Changes upon Copper Binding to <i>Cupriavidus metallidurans</i> CzcE. Biochemistry, 2010, 49, 1913-1922.	2.5	13
45	CopK from Cupriavidus metallidurans CH34 Binds Cu(I) in a Tetrathioether Site: Characterization by X-ray Absorption and NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 3770-3777.	13.7	26
46	Zinc speciation in mining and smelter contaminated overbank sediments by EXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 2010, 74, 3707-3720.	3.9	51
47	Calcium promotes cadmium elimination as vaterite grains by tobacco trichomes. Geochimica Et Cosmochimica Acta, 2010, 74, 5817-5834.	3.9	43
48	Enhanced Selenate Accumulation in <i>Cupriavidus metallidurans</i> CH34 Does Not Trigger a Detoxification Pathway. Applied and Environmental Microbiology, 2009, 75, 2250-2252.	3.1	5
49	Sampling, defining, characterising and modeling the rhizosphere—the soil science tool box. Plant and Soil, 2009, 321, 457-482.	3.7	101
50	Zinc distribution and speciation in <i>Arabidopsis halleri</i> â€f×â€f <i>Arabidopsis lyrata</i> progenies presenting various zinc accumulation capacities. New Phytologist, 2009, 184, 581-595.	7.3	114
51	Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environmental and Experimental Botany, 2008, 63, 80-90.	4.2	51
52	Chemical forms of calcium in Ca,Zn- and Ca,Cd-containing grains excreted by tobacco trichomes. Canadian Journal of Chemistry, 2007, 85, 738-746.	1.1	27
53	Zinc Sorption to Three Gram-Negative Bacteria:  Combined Titration, Modeling, and EXAFS Study. Environmental Science & Technology, 2006, 40, 1806-1813.	10.0	195
54	Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 1242-1252.	2.9	168

GERALDINE SARRET

#	Article	IF	CITATIONS
55	Trichomes of Tobacco Excrete Zinc as Zinc-Substituted Calcium Carbonate and Other Zinc-Containing Compounds. Plant Physiology, 2006, 141, 1021-1034.	4.8	129
56	Chemical Forms of Selenium in the Metal-Resistant Bacterium Ralstonia metallidurans CH34 Exposed to Selenite andSelenate. Applied and Environmental Microbiology, 2005, 71, 2331-2337.	3.1	96
57	The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis. Geochimica Et Cosmochimica Acta, 2005, 69, 2265-2284.	3.9	121
58	Zn Speciation in the Organic Horizon of a Contaminated Soil by Micro-X-ray Fluorescence, Micro- and Powder-EXAFS Spectroscopy, and Isotopic Dilution. Environmental Science & Technology, 2004, 38, 2792-2801.	10.0	92
59	Forms of Zinc Accumulated in the HyperaccumulatorArabidopsis halleri Â. Plant Physiology, 2002, 130, 1815-1826.	4.8	302
60	Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis. Geochimica Et Cosmochimica Acta, 2002, 66, 1549-1567.	3.9	154
61	Sulfur speciation in kerogens of the Orbagnoux deposit (Upper Kimmeridgian, Jura) by XANES spectroscopy and pyrolysis. Organic Geochemistry, 2002, 33, 877-895.	1.8	39
62	Accumulation Forms of Zn and Pb inPhaseolus vulgarisin the Presence and Absence of EDTA. Environmental Science & Technology, 2001, 35, 2854-2859.	10.0	185
63	Mobilization of Selenite by Ralstonia metallidurans CH34. Applied and Environmental Microbiology, 2001, 67, 769-773.	3.1	108
64	Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K- and L-edge X-ray absorption near-edge structure spectroscopy. Geochimica Et Cosmochimica Acta, 1999, 63, 3767-3779.	3.9	113
65	Mechanisms of Lichen Resistance to Metallic Pollution. Environmental Science & Technology, 1998, 32, 3325-3330.	10.0	173
66	Structural Determination of Zn and Pb Binding Sites inPenicillium chrysogenumCell Walls by EXAFS Spectroscopy. Environmental Science & amp; Technology, 1998, 32, 1648-1655.	10.0	176
67	Direct Determination of Lead Speciation in Contaminated Soils by EXAFS Spectroscopy. Environmental Science & amp; Technology, 1996, 30, 1540-1552.	10.0	318