
Joshua Zimmerberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How proteins produce cellular membrane curvature. Nature Reviews Molecular Cell Biology, 2006, 7, 9-19.	37.0	1,130
2	Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nature Cell Biology, 2001, 3, 183-191.	10.3	436
3	Dynamics of putative raft-associated proteins at the cell surface. Journal of Cell Biology, 2004, 165, 735-746.	5.2	432
4	The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation. Journal of Cell Biology, 1998, 140, 1369-1382.	5.2	358
5	Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17370-17375.	7.1	353
6	Line Tension and Interaction Energies of Membrane Rafts Calculated from Lipid Splay and Tilt. Biophysical Journal, 2005, 88, 1120-1133.	0.5	295
7	Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature, 1986, 323, 36-39.	27.8	292
8	GTPase Cycle of Dynamin Is Coupled to Membrane Squeeze and Release, Leading to Spontaneous Fission. Cell, 2008, 135, 1276-1286.	28.9	269
9	A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature, 2000, 406, 1001-1005.	27.8	240
10	Implications of lipid microdomains for membrane curvature, budding and fission. Current Opinion in Cell Biology, 2001, 13, 478-484.	5.4	221
11	Bax-type Apoptotic Proteins Porate Pure Lipid Bilayers through a Mechanism Sensitive to Intrinsic Monolayer Curvature. Journal of Biological Chemistry, 2002, 277, 49360-49365.	3.4	210
12	An Early Stage of Membrane Fusion Mediated by the Low pH Conformation of Influenza Hemagglutinin Depends upon Membrane Lipids. Journal of Cell Biology, 1997, 136, 81-93.	5.2	206
13	Membranes of the world unite!. Journal of Cell Biology, 2006, 175, 201-207.	5.2	198
14	Progressive ordering with decreasing temperature of the phospholipids of influenza virus. Nature Chemical Biology, 2008, 4, 248-255.	8.0	197
15	De novo sequencing of peptides using MALDI/TOF-TOF. Journal of the American Society for Mass Spectrometry, 2002, 13, 784-791.	2.8	189
16	Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E613-22.	7.1	184
17	Lysolipids reversibly inhibit Ca2+-, GTP- and pH-dependent fusion of biological membranes. FEBS Letters, 1993, 318, 71-76.	2.8	181
18	Infection of human tonsil histocultures: A model for HIV pathogenesis. Nature Medicine, 1995, 1, 1320-1322.	30.7	176

#	Article	IF	CITATIONS
19	Membrane Curvature: How BAR Domains Bend Bilayers. Current Biology, 2004, 14, R250-R252.	3.9	167
20	Cell-Cell and Cell-Extracellular Matrix Interactions Regulate Embryonic Stem Cell Differentiation. Stem Cells, 2007, 25, 553-561.	3.2	161
21	Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nature Methods, 2009, 6, 729-731.	19.0	160
22	Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells. Journal of Cell Biology, 2005, 169, 481-489.	5.2	158
23	Lipid Polymorphisms and Membrane Shape. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004747-a004747.	5.5	152
24	Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science, 2017, 358, 518-522.	12.6	152
25	Biochemical and Functional Studies of Cortical Vesicle Fusion: The SNARE Complex and Ca2+ Sensitivity. Journal of Cell Biology, 1998, 143, 1845-1857.	5.2	146
26	Bending membranes to the task: structural intermediates in bilayer fusion. Current Opinion in Structural Biology, 1995, 5, 541-547.	5.7	138
27	Membrane Transformation during Malaria Parasite Release from Human Red Blood Cells. Current Biology, 2005, 15, 1645-1650.	3.9	137
28	Pro-apoptotic Cleavage Products of Bcl-xL Form Cytochrome c-conducting Pores in Pure Lipid Membranes. Journal of Biological Chemistry, 2001, 276, 31083-31091.	3.4	134
29	SNARE-Mediated Lipid Mixing Depends on the Physical State of the Vesicles. Biophysical Journal, 2006, 90, 2062-2074.	0.5	133
30	Evidence for the HIV-1 phenotype switch as a causal factor in acquired immunodeficiency. Nature Medicine, 1998, 4, 346-349.	30.7	131
31	Sphingolipid Domains in the Plasma Membranes of Fibroblasts Are Not Enriched with Cholesterol. Journal of Biological Chemistry, 2013, 288, 16855-16861.	3.4	129
32	The hemifusion structure induced by influenza virus haemagglutinin is determined by physical properties of the target membranes. Nature Microbiology, 2016, 1, 16050.	13.3	124
33	Geometric Catalysis of Membrane Fission Driven by Flexible Dynamin Rings. Science, 2013, 339, 1433-1436.	12.6	123
34	Membrane fusion. Advanced Drug Delivery Reviews, 1999, 38, 197-205.	13.7	121
35	Shape control through molecular segregation in giant surfactant aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15082-15087.	7.1	121
36	A Flexible Reporter System for Direct Observation and Isolation of Cancer Stem Cells. Stem Cell Reports, 2015, 4, 155-169.	4.8	110

#	Article	IF	CITATIONS
37	Perforinâ€like protein <scp>PPLP</scp> 2 permeabilizes the red blood cell membrane during egress of <scp> <i>P</i> </scp> <i>lasmodium falciparum</i> gametocytes. Cellular Microbiology, 2014, 16, 709-733.	2.1	106
38	EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX. Nature Microbiology, 2018, 3, 1090-1098.	13.3	106
39	Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin. Journal of Cell Biology, 2005, 169, 965-976.	5.2	104
40	Actin Mediates the Nanoscale Membrane Organization of the Clustered Membrane Protein Influenza Hemagglutinin. Biophysical Journal, 2013, 104, 2182-2192.	0.5	100
41	Irreversible swelling of secretory granules during exocytosis caused by calcium. Nature, 1985, 315, 581-584.	27.8	98
42	Adaptive optics improves multiphoton super-resolution imaging. Nature Methods, 2017, 14, 869-872.	19.0	97
43	Experimental HIV Infection of Human Lymphoid Tissue: Correlation of CD4 ⁺ T Cell Depletion and Virus Syncytium-Inducing/Non-Syncytium-Inducing Phenotype in Histocultures Inoculated with Laboratory Strains and Patient Isolates of HIV Type 1. AIDS Research and Human Retroviruses, 1997, 13, 461-471.	1.1	96
44	Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13590-13595.	7.1	95
45	Identifying SARS-CoV-2 Entry Inhibitors through Drug Repurposing Screens of SARS-S and MERS-S Pseudotyped Particles. ACS Pharmacology and Translational Science, 2020, 3, 1165-1175.	4.9	94
46	Calcium Can Disrupt the SNARE Protein Complex on Sea Urchin Egg Secretory Vesicles without Irreversibly Blocking Fusion. Journal of Biological Chemistry, 1998, 273, 33667-33673.	3.4	85
47	The physical chemistry of biological membranes. , 2006, 2, 564-567.		85
48	Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines. Journal of Cell Biology, 2001, 155, 833-844.	5.2	83
49	Multilineage Differentiation of Rhesus Monkey Embryonic Stem Cells in Three-Dimensional Culture Systems. Stem Cells, 2003, 21, 281-295.	3.2	81
50	Insulin Controls the Spatial Distribution of GLUT4 on the Cell Surface through Regulation of Its Postfusion Dispersal. Cell Metabolism, 2010, 12, 250-259.	16.2	78
51	Dynamics of Fusion Pores Connecting Membranes of Different Tensions. Biophysical Journal, 2000, 78, 2241-2256.	0.5	76
52	The Anti-Influenza Virus Agent 4-GU-DANA (Zanamivir) Inhibits Cell Fusion Mediated by Human Parainfluenza Virus and Influenza Virus HA. Journal of Virology, 2000, 74, 11108-11114.	3.4	74
53	Cholesterol Promotes Hemifusion and Pore Widening in Membrane Fusion Induced by Influenza Hemagglutinin. Journal of General Physiology, 2008, 131, 503-513.	1.9	73
54	Large-Scale Production of Pseudotyped Lentiviral Vectors Using Baculovirus GP64. Human Gene Therapy, 2003, 14, 67-77.	2.7	71

#	Article	IF	CITATIONS
55	New Stages in the Program of Malaria Parasite Egress Imaged in Normal and Sickle Erythrocytes. Current Biology, 2010, 20, 1117-1121.	3.9	66
56	Exocytotic fusion pores exhibit semi-stable states. Journal of Membrane Biology, 1993, 133, 61-75.	2.1	65
57	Irreversible effect of cysteine protease inhibitors on the release of malaria parasites from infected erythrocytes. Cellular Microbiology, 2009, 11, 95-105.	2.1	61
58	EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biology, 2019, 17, e3000473.	5.6	60
59	Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin. EMBO Journal, 2002, 21, 5701-5710.	7.8	59
60	Multiple Local Contact Sites are Induced by CPI-Linked Influenza Hemagglutinin During Hemifusion and Flickering Pore Formation. Traffic, 2000, 1, 622-630.	2.7	58
61	A Lipid/Protein Complex Hypothesis for Exocytotic Fusion Pore Formation. Annals of the New York Academy of Sciences, 1991, 635, 307-317.	3.8	57
62	Quantitative femto- to attomole immunodetection of regulated secretory vesicle proteins critical to exocytosis. Analytical Biochemistry, 2002, 307, 54-62.	2.4	57
63	Regulated secretion: SNARE density, vesicle fusion and calcium dependence. Journal of Cell Science, 2003, 116, 2087-2097.	2.0	55
64	Palmitoylation Contributes to Membrane Curvature in Influenza A Virus Assembly and Hemagglutinin-Mediated Membrane Fusion. Journal of Virology, 2017, 91, .	3.4	55
65	Submaximal Responses in Calcium-triggered Exocytosis Are Explained by Differences in the Calcium Sensitivity of Individual Secretory Vesicles. Journal of General Physiology, 1998, 112, 559-567.	1.9	53
66	Shape bistability of a membrane neck: A toggle switch to control vesicle content release. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8698-8703.	7.1	53
67	Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain. Journal of Cell Biology, 2007, 179, 627-633.	5.2	53
68	An Analysis of the Role of the Target Membrane on the Gp64-induced Fusion Pore. Virology, 1999, 253, 65-76.	2.4	51
69	Lipid Flow through Fusion Pores Connecting Membranes of Different Tensions. Biophysical Journal, 1999, 76, 2951-2965.	0.5	50
70	A Discrete Stage of Baculovirus GP64-mediated Membrane Fusion. Molecular Biology of the Cell, 1999, 10, 4191-4200.	2.1	49
71	Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta. PLoS Genetics, 2016, 12, e1006156.	3.5	49
72	Hemagglutinin Clusters in the Plasma Membrane Are Not Enriched with Cholesterol and Sphingolipids. Biophysical Journal, 2015, 108, 1652-1659.	0.5	48

#	Article	IF	CITATIONS
73	Structural basis for placental malaria mediated by Plasmodium falciparum VAR2CSA. Nature Microbiology, 2021, 6, 380-391.	13.3	47
74	Acidic pH induces fusion of cells infected with baculovirus to form syncytia. FEBS Letters, 1992, 304, 221-224.	2.8	46
75	Cytoplasmic free Ca2+ is essential for multiple steps in malaria parasite egress from infected erythrocytes. Malaria Journal, 2013, 12, 41.	2.3	46
76	Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Letters, 2002, 532, 115-120.	2.8	45
77	Shear Forces during Blast, Not Abrupt Changes in Pressure Alone, Generate Calcium Activity in Human Brain Cells. PLoS ONE, 2012, 7, e39421.	2.5	44
78	Molecular mechanisms of membrane fusion: Steps during phospholipid and exocytotic membrane fusion. Bioscience Reports, 1987, 7, 251-268.	2.4	42
79	Short-Chain Alcohols Promote an Early Stage of Membrane Hemifusion. Biophysical Journal, 1999, 77, 2035-2045.	0.5	41
80	Insulin Regulates Glut4 Confinement in Plasma Membrane Clusters in Adipose Cells. PLoS ONE, 2013, 8, e57559.	2.5	39
81	Rounding precedes rupture and breakdown of vacuolar membranes minutes before malaria parasite egress from erythrocytes. Cellular Microbiology, 2018, 20, e12868.	2.1	39
82	How can proteolipids be central players in membrane fusion?. Trends in Cell Biology, 2001, 11, 233-235.	7.9	37
83	Cytotoxicity Mediated by the Fas Ligand (FasL)-activated Apoptotic Pathway in Stem Cells. Journal of Biological Chemistry, 2009, 284, 22022-22028.	3.4	37
84	Lymphocyte Trafficking and HIV Infection of Human Lymphoid Tissue in a Rotating Wall Vessel Bioreactor. AIDS Research and Human Retroviruses, 1997, 13, 1411-1420.	1.1	36
85	Protein–lipid interactions critical to replication of the influenza A virus. FEBS Letters, 2016, 590, 1940-1954.	2.8	36
86	Influenza Hemagglutinin Modulates Phosphatidylinositol 4,5-Bisphosphate Membrane Clustering. Biophysical Journal, 2019, 116, 893-909.	0.5	36
87	Paradoxical Lipid Dependence of Pores Formed by the Escherichia coli α-Hemolysin in Planar Phospholipid Bilayer Membranes. Biophysical Journal, 2006, 91, 3748-3755.	0.5	35
88	Single cell fusion events induced by influenza hemagglutinin: Studies with rapid-flow, quantitative fluorescence microscopy. Experimental Cell Research, 1991, 195, 137-144.	2.6	34
89	Invasion of Human Tissue Ex Vivo byBorrelia burgdorferi. Journal of Infectious Diseases, 2005, 191, 1747-1754.	4.0	34
90	Domain-Driven Morphogenesis of Cellular Membranes. Current Biology, 2009, 19, R772-R780.	3.9	33

#	Article	IF	CITATIONS
91	Synaptotagmin: fusogenic role for calcium sensor?. Nature Structural and Molecular Biology, 2006, 13, 301-303.	8.2	32
92	Impaired Tethering and Fusion of GLUT4 Vesicles in Insulin-Resistant Human Adipose Cells. Diabetes, 2013, 62, 3114-3119.	0.6	32
93	Lipid-dependence of target membrane stability during influenza viral fusion. Journal of Cell Science, 2018, 132, .	2.0	32
94	Hardly Vacuous: The Parasitophorous Vacuolar Membrane of Malaria Parasites. Trends in Parasitology, 2020, 36, 138-146.	3.3	32
95	Domain formation in membranes caused by lipid wetting of protein. Physical Review E, 2008, 77, 051901.	2.1	31
96	Insulin Regulates Fusion of GLUT4 Vesicles Independent of Exo70-mediated Tethering. Journal of Biological Chemistry, 2009, 284, 7914-7919.	3.4	31
97	Cooperative elastic stresses, the hydrophobic effect, and lipid tilt in membrane remodeling. FEBS Letters, 2010, 584, 1824-1829.	2.8	31
98	NEUROSCIENCE: Enhanced: Synaptic Membranes Bend to the Will of a Neurotoxin. Science, 2005, 310, 1626-1627.	12.6	30
99	Membrane biophysics. Current Biology, 2006, 16, R272-R276.	3.9	30
100	The Sea Urchin Cortical Reaction Annals of the New York Academy of Sciences, 1991, 635, 35-44.	3.8	29
101	A Kinetic Analysis of Calcium-Triggered Exocytosis. Journal of General Physiology, 2001, 118, 145-156.	1.9	29
102	An adhesion-based method for plasma membrane isolation: Evaluating cholesterol extraction from cells and their membranes. Analytical Biochemistry, 2009, 394, 171-176.	2.4	29
103	Endocytosis: Curvature to the ENTH Degree. Current Biology, 2002, 12, R770-R772.	3.9	28
104	Orientation and Interaction of Oblique Cylindrical Inclusions Embedded in a Lipid Monolayer: A Theoretical Model for Viral Fusion Peptides. Biophysical Journal, 2004, 87, 999-1012.	0.5	28
105	Are The Curves in all the Right Places?. Traffic, 2000, 1, 366-369.	2.7	27
106	Sea urchin egg preparations as systems for the study of calcium-triggered exocytosis. Journal of Physiology, 1999, 520, 15-21.	2.9	26
107	Blast shockwaves propagate Ca2+ activity via purinergic astrocyte networks in human central nervous system cells. Scientific Reports, 2016, 6, 25713.	3.3	26
108	Fusion Pore Conductance: Experimental Approaches and Theoretical Algorithms. Biophysical Journal, 1998, 74, 2374-2387.	0.5	23

#	Article	IF	CITATIONS
109	Exploitation of a newly-identified entry pathway into the malaria parasite-infected erythrocyte to inhibit parasite egress. Scientific Reports, 2017, 7, 12250.	3.3	23
110	Hemoglobinopathic Erythrocytes Affect the Intraerythrocytic Multiplication of Plasmodium falciparum In Vitro. Journal of Infectious Diseases, 2014, 210, 1100-1109.	4.0	22
111	Water movement during channel opening and closing. Journal of Bioenergetics and Biomembranes, 1987, 19, 351-358.	2.3	21
112	Ionic and permeability requirements for exocytosis in vitro in sea urchin eggs. Journal of Membrane Biology, 1988, 101, 199-207.	2.1	20
113	Transport-Specific isolation of large channels reconstituted into lipid vesicles. Journal of Membrane Biology, 1989, 109, 243-250.	2.1	20
114	Contacting domains segregate a lipid transporter from a solute transporter in the malarial host–parasite interface. Nature Communications, 2020, 11, 3825.	12.8	20
115	Deletion of Plasmodium falciparum Protein RON3 Affects the Functional Translocation of Exported Proteins and Glucose Uptake. MBio, 2019, 10, .	4.1	19
116	Dye Transport through Bilayers Agrees with Lipid Electropore Molecular Dynamics. Biophysical Journal, 2020, 119, 1724-1734.	0.5	19
117	HIV and Apoptosis. Journal of Experimental Medicine, 2001, 193, F11-F14.	8.5	18
118	Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media. Malaria Journal, 2007, 6, 61.	2.3	18
119	Membrane fusion of secretory vesicles of the sea urchin egg in the absence of NSF. Journal of Cell Science, 2004, 117, 2345-2356.	2.0	17
120	Dynamic Relationship of the SNARE Complex with a Membrane. Biophysical Journal, 2019, 117, 627-630.	0.5	17
121	A high throughput screening assay for inhibitors of SARS-CoV-2 pseudotyped particle entry. SLAS Discovery, 2022, 27, 86-94.	2.7	16
122	Insulin Stimulates Translocation of Human GLUT4 to the Membrane in Fat Bodies of Transgenic Drosophila melanogaster. PLoS ONE, 2013, 8, e77953.	2.5	15
123	The Calcium Sensitivity of Individual Secretory Vesicles Is Invariant with the Rate of Calcium Delivery. Journal of General Physiology, 1998, 112, 569-576.	1.9	14
124	Trapping by Clusters of Channels, Receptors, and Transporters: Quantitative Description. Biophysical Journal, 2014, 106, 500-509.	0.5	14
125	Monolayerwise application of linear elasticity theory well describes strongly deformed lipid membranes and the effect of solvent. Soft Matter, 2020, 16, 1179-1189.	2.7	14
126	Calcium-induced fusion of sea urchin egg secretory vesicles with planar phospholipid bilayer membranes. Molecular Membrane Biology, 1999, 16, 89-94.	2.0	13

#	Article	IF	CITATIONS
127	[4] Kinetics of cell fusion mediated by viral spike glycoproteins. Methods in Enzymology, 1993, 221, 42-58.	1.0	12
128	ER Biogenesis: Self-Assembly of Tubular Topology by Protein Hairpins. Current Biology, 2008, 18, R474-R476.	3.9	12
129	Initial size and dynamics of viral fusion pores are a function of the fusion protein mediating membrane fusion. Biology of the Cell, 2008, 100, 377-386.	2.0	12
130	Communication: Clusters of absorbing disks on a reflecting wall: Competition for diffusing particles. Journal of Chemical Physics, 2012, 136, 211102.	3.0	12
131	GREG cells, a dysferlin-deficient myogenic mouse cell line. Experimental Cell Research, 2012, 318, 127-135.	2.6	11
132	Syncytium Formation in Cultured Human Lymphoid Tissue: Fusion of Implanted HIV Glycoprotein 120/41-Expressing Cells with Native CD4 ⁺ Cells. AIDS Research and Human Retroviruses, 1995, 11, 697-704.	1.1	10
133	A Negative Stain for Electron Microscopic Tomography. Microscopy and Microanalysis, 2012, 18, 331-335.	0.4	10
134	Human Adipose Cells In Vitro Are Either Refractory or Responsive to Insulin, Reflecting Host Metabolic State. PLoS ONE, 2015, 10, e0119291.	2.5	10
135	Observations of calcium dynamics in cortical secretory vesicles. Cell Calcium, 2012, 52, 217-225.	2.4	9
136	CD47 interactions with exportin-1 limit the targeting of m7C-modified RNAs to extracellular vesicles. Journal of Cell Communication and Signaling, 2022, 16, 397-419.	3.4	9
137	Cellular Biophysics: Bacterial Endospore, Membranes and Random Fluctuation. Current Biology, 2006, 16, R1025-R1028.	3.9	8
138	Response to Blast-like Shear Stresses Associated with Mild Blast-Induced Brain Injury. Biophysical Journal, 2019, 117, 1167-1178.	0.5	8
139	[8] Simultaneous electrical and optical measurements of individual membrane fusion events during exocytosis. Methods in Enzymology, 1993, 221, 99-112.	1.0	6
140	Flexible Scaffolding Made of Rigid BARs. Cell, 2008, 132, 727-729.	28.9	6
141	Isolation and Ultrastructural Characterization of Squid Synaptic Vesicles. Biological Bulletin, 2011, 220, 89-96.	1.8	5
142	Ectodomain Pulling Combines with Fusion Peptide Inserting to Provide Cooperative Fusion for Influenza Virus and HIV. International Journal of Molecular Sciences, 2020, 21, 5411.	4.1	5
143	Shaping biological matter. Nature Materials, 2009, 8, 173-174.	27.5	4
144	Functional Role for Transporter Isoforms in Optimizing Membrane Transport. Biophysical Journal, 2011, 101, L14-L16.	0.5	4

#	Article	IF	CITATIONS
145	Volumes apart. Nature, 1987, 325, 114-114.	27.8	3
146	A score for membrane fusion. Nature, 2009, 459, 1065-1066.	27.8	3
147	Reconstitution of Membrane Budding with Unilamellar Vesicles. Methods in Enzymology, 2009, 464, 55-75.	1.0	3
148	Elongated Membrane Zones Boost Interactions of Diffusing Proteins. Cell, 2011, 146, 501-503.	28.9	3
149	Long, Saturated Chains: Tasty Domains for Kinases of Insulin Resistance. Developmental Cell, 2011, 21, 604-606.	7.0	2
150	Thermodynamics of interleaflet cavitation in lipid bilayer membranes. Physical Review E, 2013, 87, 022715.	2.1	2
151	It's What's Inside that Matters. Biophysical Journal, 2014, 107, 5-7.	0.5	2
152	CD63+ and MHC Class I+ Subsets of Extracellular Vesicles Produced by Wild-Type and CD47-Deficient Jurkat T Cells Have Divergent Functional Effects on Endothelial Cell Gene Expression. Biomedicines, 2021, 9, 1705.	3.2	2
153	Unique Aggregation of Retroviral Particles Pseudotyped with the Delta Variant SARS-CoV-2 Spike Protein. Viruses, 2022, 14, 1024.	3.3	2
154	Studying Spatial Distributions of Influenza Hemagglutinin on the Plasma Membrane of Fibroblasts: A Work in Progress. Macromolecular Symposia, 2005, 219, 17-24.	0.7	1
155	High-Resolution Imaging of the Distributions of Cholesterol, Sphingolipids, and Specific Proteins in the Plasma Membrane with Secondary Ion Mass Spectrometry. Microscopy and Microanalysis, 2015, 21, 2397-2398.	0.4	1
156	Subcutaneous adipose tissue imaging of human obesity reveals two types of adipocyte membranes: Insulin-responsive and -nonresponsive. Journal of Biological Chemistry, 2018, 293, 14249-14259.	3.4	1
157	Designing antimalarials that break into cells to lock down parasites. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2108103118.	7.1	1
158	Curvature Stimulates Assembly of Gag Shell through Distinct Fluid-Like Intermediate. Biophysical Journal, 2013, 104, 416a-417a.	0.5	0
159	Free Ca2+ Initiates and Regulates Malaria Parasite Egress Program in Infected Erythrocytes. Biophysical Journal, 2013, 104, 41a.	0.5	0
160	Phase Behavior of Synaptosomal Membranes: The Effect of Lipid Composition and Temperature. Biophysical Journal, 2015, 108, 342a.	0.5	0
161	Calcium-Activated Potassium Channels in the Malaria Parasite Erythrocyte Cycle. Biophysical Journal, 2016, 110, 448a.	0.5	0
162	Is the Site of Influenza Virus Assembly and Budding Enriched with Cholesterol and Sphingolipids?. Biophysical Journal, 2017, 112, 318a-319a.	0.5	0

#	Article	IF	CITATIONS
163	Malaria Parasites Break and Degrade Two Membranes to Egress from Human Erythrocyte. Biophysical Journal, 2019, 116, 218a.	0.5	0
164	Effect of Lipid Structure and Material Properties on the Membrane Stability to Pore Formation. Biophysical Journal, 2020, 118, 390a.	0.5	0
165	Atomic Force Microscopy in the Study of Protein Self-Assembly. Biophysical Journal, 2020, 118, 200a.	0.5	0
166	Nanosecond Life Cycle of Biomembrane Electroporation: Experimental Validation of Molecular Model. Biophysical Journal, 2020, 118, 81a.	0.5	0
167	A Bimodal Nanosensor for Probing Influenza Fusion Protein Activity Using Magnetic Relaxation. ACS Sensors, 2021, 6, 1899-1909.	7.8	0
168	Mechanisms of nonâ€random sphingolipid organization in the plasma membranes of fibroblast cells. FASEB Journal, 2013, 27, 1023.2.	0.5	0
169	Abstract 66: SR-BI Mediates Cholesteryl Ester (CE) Sorting in Tetraspanin Microdomains with CD81 Facilitating CE Nano-endocytosis and CE Transport to Lipid Droplets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
170	Probing the lipid composition at the site of influenza virus assembly and budding with highâ€resolution SIMS. FASEB Journal, 2017, 31, 629.20.	0.5	0
171	Organelle arrangement in mature blood stage malaria parasites. Biophysical Journal, 2022, 121, 81a.	0.5	0
172	Title is missing!. , 2019, 17, e3000473.		0
173	Title is missing!. , 2019, 17, e3000473.		0
174	Title is missing!. , 2019, 17, e3000473.		0
175	Title is missing!. , 2019, 17, e3000473.		0

176 Title is missing!. , 2019, 17, e3000473.

0