Leonardo G Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212159/publications.pdf

Version: 2024-02-01

233 papers 39,862 citations

98 h-index 193 g-index

238 all docs

238 docs citations

times ranked

238

21825 citing authors

#	Article	IF	CITATIONS
1	Crowdsourcing in Cognitive and Systems Neuroscience. Neuroscientist, 2022, 28, 425-437.	2.6	12
2	Reward and plasticity: Implications for neurorehabilitation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 331-340.	1.0	5
3	The Intersection of Offline Learning and Rehabilitation. Frontiers in Human Neuroscience, 2021, 15, 667574.	1.0	6
4	Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Reports, 2021, 35, 109193.	2.9	51
5	The prevalence of the Val66Met polymorphism in musicians: Possible evidence for compensatory neuroplasticity from a pilot study. PLoS ONE, 2021, 16, e0245107.	1.1	1
6	Statistical learning occurs during practice while high-order rule learning during rest period. Npj Science of Learning, 2021, 6, 14.	1.5	15
7	Phase-dependent offline enhancement of human motor memory. Brain Stimulation, 2021, 14, 873-883.	0.7	11
8	Repetitive Peripheral Sensory Stimulation as an Add-On Intervention for Upper Limb Rehabilitation in Stroke: A Randomized Trial. Neurorehabilitation and Neural Repair, 2021, 35, 1059-1064.	1.4	2
9	Transcranial direct current stimulation facilitates response inhibition through dynamic modulation of the fronto-basal ganglia network. Brain Stimulation, 2020, 13, 96-104.	0.7	30
10	Phase-dependent transcranial magnetic stimulation of the lesioned hemisphere is accurate after stroke. Brain Stimulation, 2020, 13, 1354-1357.	0.7	10
11	Induction of LTD-like corticospinal plasticity by low-frequency rTMS depends on pre-stimulus phase of sensorimotor $\hat{l}^1\!\!/4$ -rhythm. Brain Stimulation, 2020, 13, 1580-1587.	0.7	38
12	Mechanisms of offline motor learning at a microscale of seconds in large-scale crowdsourced data. Npj Science of Learning, 2020, 5, 7.	1.5	49
13	Treatment of Upper Limb Paresis With Repetitive Peripheral Nerve Sensory Stimulation and Motor Training: Study Protocol for a Randomized Controlled Trial. Frontiers in Neurology, 2020, 11, 196.	1.1	4
14	Lowâ€Frequency Brain Oscillations Track Motor Recovery in Human Stroke. Annals of Neurology, 2019, 86, 853-865.	2.8	39
15	Plasticity and recovery of function. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 473-483.	1.0	4
16	Susceptibility of consolidated procedural memory to interference is independent of its active task-based retrieval. PLoS ONE, 2019, 14, e0210876.	1.1	7
17	Transcutaneous spinal direct current stimulation improves locomotor learning in healthy humans. Brain Stimulation, 2019, 12, 628-634.	0.7	27
18	Differential Brain Mechanisms of Selection and Maintenance of Information during Working Memory. Journal of Neuroscience, 2019, 39, 3728-3740.	1.7	51

#	Article	ΙF	Citations
19	Reversing working memory decline in the elderly. Nature Neuroscience, 2019, 22, 686-688.	7.1	7
20	A Rapid Form of Offline Consolidation in Skill Learning. Current Biology, 2019, 29, 1346-1351.e4.	1.8	91
21	Brain-Machine Interface in Chronic Stroke: Randomized Trial Long-Term Follow-up. Neurorehabilitation and Neural Repair, 2019, 33, 188-198.	1.4	61
22	Beta rhythm events predict corticospinal motor output. Scientific Reports, 2019, 9, 18305.	1.6	14
23	Sensorimotor Oscillatory Phase–Power Interaction Gates Resting Human Corticospinal Output. Cerebral Cortex, 2019, 29, 3766-3777.	1.6	59
24	Transcranial Direct Current Stimulation Enhances Motor Skill Learning but Not Generalization in Chronic Stroke. Neurorehabilitation and Neural Repair, 2018, 32, 295-308.	1.4	40
25	Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimulation, 2018, 11, 465-480.	0.7	144
26	Combined Brain and Peripheral Nerve Stimulation in Chronic Stroke Patients With Moderate to Severe Motor Impairment. Neuromodulation, 2018, 21, 176-183.	0.4	24
27	Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis. Neurorehabilitation and Neural Repair, 2018, 32, 863-871.	1.4	41
28	Distributed cortical structural properties contribute to motor cortical excitability and inhibition. Brain Structure and Function, 2018, 223, 3801-3812.	1.2	7
29	A Preliminary Comparison of Motor Learning Across Different Non-invasive Brain Stimulation Paradigms Shows No Consistent Modulations. Frontiers in Neuroscience, 2018, 12, 253.	1.4	27
30	Plasticity of Sensorimotor Networks. Neuroscientist, 2017, 23, 185-196.	2.6	16
31	Exploratory studies: a crucial step towards better hypothesisâ€driven confirmatory research in brain stimulation. Journal of Physiology, 2017, 595, 1013-1014.	1.3	1
32	Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 2017, 128, 589-603.	0.7	275
33	Re-stepping into the same river: competition problem rather than a reconsolidation failure in an established motor skill. Scientific Reports, 2017, 7, 9406.	1.6	20
34	Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2017, 12, 480-493.	2.9	266
35	Biomarkers of Stroke Recovery: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2017, 31, 864-876.	1.4	124
36	Longitudinal Structural and Functional Differences Between Proportional and Poor Motor Recovery After Stroke. Neurorehabilitation and Neural Repair, 2017, 31, 1029-1041.	1.4	49

#	Article	IF	CITATIONS
37	Lasting deficit in inhibitory control with mild traumatic brain injury. Scientific Reports, 2017, 7, 14902.	1.6	20
38	Neuroplasticity. Series on Bioengineering and Biomedical Engineering, 2017, , 192-212.	0.1	0
39	Temporal similarity perfusion mapping: A standardized and model-free method for detecting perfusion deficits in stroke. PLoS ONE, 2017, 12, e0185552.	1.1	9
40	Brain–Computer Interface–Based Communication in the Completely Locked-In State. PLoS Biology, 2017, 15, e1002593.	2.6	176
41	tACS Phase Locking of Frontal Midline Theta Oscillations Disrupts Working Memory Performance. Frontiers in Cellular Neuroscience, 2016, 10, 120.	1.8	61
42	Recrudescence of Focal Stroke Symptoms during Pain Management with Hydromorphone. Frontiers in Neurology, 2016, 7, 50.	1.1	11
43	PreSMA stimulation changes taskâ€free functional connectivity in the frontoâ€basalâ€ganglia that correlates with response inhibition efficiency. Human Brain Mapping, 2016, 37, 3236-3249.	1.9	36
44	Predicting motor improvement after stroke with clinical assessment and diffusion tensor imaging. Neurology, 2016, 86, 1924-1925.	1.5	80
45	3D-printed head models for navigated non-invasive brain stimulation. Clinical Neurophysiology, 2016, 127, 3341-3342.	0.7	1
46	Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurology, The, 2016, 15, 1019-1027.	4.9	279
47	Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning. Neurobiology of Aging, 2016, 39, 210-216.	1.5	61
48	Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback. Neurorehabilitation and Neural Repair, 2016, 30, 671-675.	1.4	89
49	Altered Human Memory Modification in the Presence of Normal Consolidation. Cerebral Cortex, 2016, 26, 3828-3837.	1.6	19
50	Neural Substrates of Motor Recovery in Severely Impaired Stroke Patients With Hand Paralysis. Neurorehabilitation and Neural Repair, 2016, 30, 328-338.	1.4	29
51	Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields. Neurolmage, 2016, 140, 33-40.	2.1	30
52	Decoding upper limb residual muscle activity in severe chronic stroke. Annals of Clinical and Translational Neurology, 2015, 2, 1-11.	1.7	38
53	Effect of foreknowledge on neural activity of primary $\tilde{A}^{\ddagger}\hat{a}, \neg \hat{A}^{\ddagger}\hat{a}$ go $\tilde{A}^{\ddagger}\hat{a}, \neg \hat{A}^{\ddagger}\hat{a}$ responses relates to response stopping and switching. Frontiers in Human Neuroscience, 2015, 9, 34.	1.0	8
54	Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease, 2015, 83, 172-179.	2.1	256

#	Article	IF	CITATIONS
55	Time- but Not Sleep-Dependent Consolidation of tDCS-Enhanced Visuomotor Skills. Cerebral Cortex, 2015, 25, 109-117.	1.6	119
56	Modulating reconsolidation: a link to causal systems-level dynamics of human memories. Trends in Cognitive Sciences, 2015, 19, 475-482.	4.0	50
57	Practice Structure Improves Unconscious Transitional Memories by Increasing Synchrony in a Premotor Network. Journal of Cognitive Neuroscience, 2015, 27, 1503-1512.	1.1	21
58	Enhancing Hebbian Learning to Control Brain Oscillatory Activity. Cerebral Cortex, 2015, 25, 2409-2415.	1.6	49
59	Crossmodal encoding of motor sequence memories. Psychological Research, 2015, 79, 318-326.	1.0	4
60	NIBS-driven brain plasticity. Archives Italiennes De Biologie, 2015, 152, 247-58.	0.1	16
61	Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: feasibility and limitations. Frontiers in Behavioral Neuroscience, 2014, 8, 93.	1.0	42
62	Conscious recall of different aspects of skill memory. Frontiers in Behavioral Neuroscience, 2014, 8, 233.	1.0	7
63	Stochastic reinforcement benefits skill acquisition. Learning and Memory, 2014, 21, 140-142.	0.5	31
64	Translational Neurorehabilitation Research in the Third World. Stroke, 2014, 45, 1495-1497.	1.0	12
65	Brain Structural Substrates of Reward Dependence during Behavioral Performance. Journal of Neuroscience, 2014, 34, 16433-16441.	1.7	20
66	Baseline frontostriatal-limbic connectivity predicts reward-based memory formation. Human Brain Mapping, 2014, 35, 5921-5931.	1.9	19
67	Handgrip-Related Activation in the Primary Motor Cortex Relates to Underlying Neuronal Metabolism After Stroke. Neurorehabilitation and Neural Repair, 2014, 28, 433-442.	1.4	13
68	Practice and sleep form different aspects of skill. Nature Communications, 2014, 5, 3407.	5.8	36
69	Nonparetic Arm Force Does Not Overinhibit the Paretic Arm in Chronic Poststroke Hemiparesis. Archives of Physical Medicine and Rehabilitation, 2014, 95, 849-856.	0.5	23
70	Interference with Existing Memories Alters Offline Intrinsic Functional Brain Connectivity. Neuron, 2014, 81, 69-76.	3.8	61
71	Cortico-subcortical neuronal circuitry associated withÂreconsolidation of human procedural memories. Cortex, 2014, 58, 281-288.	1.1	55
72	Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Frontiers in Human Neuroscience, 2014, 8, 378.	1.0	162

#	Article	IF	CITATIONS
73	Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Frontiers in Aging Neuroscience, 2014, 6, 289.	1.7	97
74	Brain–machine interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology, 2013, 74, 100-108.	2.8	754
75	Causal Role of Prefrontal Cortex in Strengthening of Episodic Memories through Reconsolidation. Current Biology, 2013, 23, 2181-2184.	1.8	66
76	Noninvasive brain stimulation in neurorehabilitation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 499-524.	1.0	69
77	Noninvasive brain stimulation: from physiology to network dynamics and back. Nature Neuroscience, 2013, 16, 838-844.	7.1	466
78	Neural plasticity and its contribution to functional recovery. Handbook of Clinical Neurology \mid Edited By PJ Vinken and G W Bruyn, 2013, 110, 3-12.	1.0	79
79	Neuroenhancement of the aging brain: Restoring skill acquisition in old subjects. Annals of Neurology, 2013, 73, 10-15.	2.8	176
80	Reversed timing-dependent associative plasticity in the human brain through interhemispheric interactions. Journal of Neurophysiology, 2013, 109, 2260-2271.	0.9	24
81	Brain–machine interfaces and transcranial stimulation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 435-444.	1.0	3
82	Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain, 2012, 135, 596-614.	3.7	131
83	Modulation of Training by Single-Session Transcranial Direct Current Stimulation to the Intact Motor Cortex Enhances Motor Skill Acquisition of the Paretic Hand. Stroke, 2012, 43, 2185-2191.	1.0	175
84	Rewiring the Brain. Neurorehabilitation and Neural Repair, 2012, 26, 282-292.	1.4	177
85	Common mechanisms of human perceptual and motor learning. Nature Reviews Neuroscience, 2012, 13, 658-664.	4.9	148
86	Recovery of motor function after stroke. Developmental Psychobiology, 2012, 54, 254-262.	0.9	71
87	Transcranial magnetic stimulation in mild to severe hemiparesis early after stroke: a proof of principle and novel approach to improve motor function. Journal of Neurology, 2012, 259, 1399-1405.	1.8	88
88	Double dissociation of working memory load effects induced by bilateral parietal modulation. Neuropsychologia, 2012, 50, 396-402.	0.7	62
89	Modulation of motor learning and memory formation by non-invasive cortical stimulation of the primary motor cortex. Neuropsychological Rehabilitation, 2011, 21, 650-675.	1.0	50
90	Neuroplasticity in the context of motor rehabilitation after stroke. Nature Reviews Neurology, 2011, 7, 76-85.	4.9	500

#	Article	IF	Citations
91	Neuroplasticity Subserving Motor Skill Learning. Neuron, 2011, 72, 443-454.	3.8	1,024
92	Modifying somatosensory processing with non-invasive brain stimulation. Restorative Neurology and Neuroscience, 2011, 29, 427-437.	0.4	43
93	Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. Journal of Physiology, 2011, 589, 21-28.	1.3	50
94	Reward Improves Long-Term Retention of a Motor Memory through Induction of Offline Memory Gains. Current Biology, 2011, 21, 557-562.	1.8	265
95	Motor callosal disconnection in early relapsingâ€remitting multiple sclerosis. Human Brain Mapping, 2011, 32, 846-855.	1.9	44
96	Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. Journal of Neurophysiology, 2011, 106, 652-661.	0.9	127
97	Primary Motor Cortex in Stroke. Stroke, 2011, 42, 1004-1009.	1.0	44
98	Harnessing neuroplasticity for clinical applications. Brain, 2011, 134, 1591-1609.	3.7	907
99	Mechanisms of Short-Term Training-Induced Reaching Improvement in Severely Hemiparetic Stroke Patients. Neurorehabilitation and Neural Repair, 2011, 25, 398-411.	1.4	69
100	Interhemispheric Interactions between the Human Primary Somatosensory Cortices. PLoS ONE, 2011, 6, e16150.	1.1	56
101	Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca's homologue area. Restorative Neurology and Neuroscience, 2011, 29, 141-152.	0.4	143
102	Interhemispheric Asymmetry of Corticomotor Excitability After Chronic Cerebellar Infarcts. Cerebellum, 2010, 9, 398-404.	1.4	20
103	Recovery of function in humans: Cortical stimulation and pharmacological treatments after stroke. Neurobiology of Disease, 2010, 37, 243-251.	2.1	106
104	A case for the involvement of phonological loop in sentence comprehension. Neuropsychologia, 2010, 48, 4003-4011.	0.7	35
105	Modification of Existing Human Motor Memories Is Enabled by Primary Cortical Processing during Memory Reactivation. Current Biology, 2010, 20, 1545-1549.	1.8	105
106	Contribution of Transcranial Magnetic Stimulation to the Understanding of Functional Recovery Mechanisms After Stroke. Neurorehabilitation and Neural Repair, 2010, 24, 125-135.	1.4	108
107	Effectiveness of Virtual Reality Using Wii Gaming Technology in Stroke Rehabilitation. Stroke, 2010, 41, 1477-1484.	1.0	627
108	Effects of Somatosensory Stimulation on Motor Function After Subacute Stroke. Neurorehabilitation and Neural Repair, 2010, 24, 263-272.	1.4	130

#	Article	IF	Citations
109	Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiology of Aging, 2010, 31, 2160-2168.	1.5	154
110	Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron, 2010, 66, 198-204.	3.8	1,177
111	Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1590-1595.	3.3	1,168
112	The Corticospinal System and Transcranial Magnetic Stimulation in Stroke. Topics in Stroke Rehabilitation, 2009, 16, 254-269.	1.0	43
113	Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimulation, 2009, 2, 58-80.	0.7	299
114	Effects of different viewing perspectives on somatosensory activations during observation of touch. Human Brain Mapping, 2009, 30, 2722-2730.	1.9	159
115	Scaling of motor cortical excitability during unimanual force generation. Cortex, 2009, 45, 1065-1071.	1.1	51
116	Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clinical Neurophysiology, 2009, 120, 1859-1865.	0.7	64
117	Modulation of Effects of Intermittent Theta Burst Stimulation Applied Over Primary Motor Cortex (M1) by Conditioning Stimulation of the Opposite M1. Journal of Neurophysiology, 2009, 102, 766-773.	0.9	34
118	Effects of Combined Peripheral Nerve Stimulation and Brain Polarization on Performance of a Motor Sequence Task After Chronic Stroke. Stroke, 2009, 40, 1764-1771.	1.0	171
119	The olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for highâ€performance sports?. Journal of Physiology, 2008, 586, 65-70.	1.3	78
120	Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. Journal of Physiology, 2008, 586, 325-351.	1.3	480
121	Motor Cortical Excitability in Patients with Poststroke Epilepsy. Epilepsia, 2008, 49, 117-124.	2.6	15
122	State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulation, 2008, 1, 151-163.	0.7	342
123	Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 2008, 1, 206-223.	0.7	2,538
124	Consensus: Motor cortex plasticity protocols. Brain Stimulation, 2008, 1, 164-182.	0.7	529
125	Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimulation, 2008, 1, 326-336.	0.7	218
126	Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation?. Brain Stimulation, 2008, 1, 363-369.	0.7	225

#	Article	IF	Citations
127	Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimulation, 2008, 1, 370-382.	0.7	131
128	Improvement of spatial tactile acuity by transcranial direct current stimulation. Clinical Neurophysiology, 2008, 119, 805-811.	0.7	113
129	Mechanisms Underlying Functional Changes in the Primary Motor Cortex Ipsilateral to an Active Hand. Journal of Neuroscience, 2008, 28, 5631-5640.	1.7	238
130	Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke. Stroke, 2008, 39, 910-917.	1.0	537
131	Effects of Action Observation on Physical Training After Stroke. Stroke, 2008, 39, 1814-1820.	1.0	204
132	Influence of Somatosensory Input on Interhemispheric Interactions in Patients With Chronic Stroke. Neurorehabilitation and Neural Repair, 2008, 22, 477-485.	1.4	57
133	Time-Specific Contribution of the Supplementary Motor Area to Intermanual Transfer of Procedural Knowledge. Journal of Neuroscience, 2008, 28, 9664-9669.	1.7	42
134	Effects of somatosensory stimulation on the excitability of the unaffected hemisphere in chronic stroke patients. Clinics, 2008, 63, 735-740.	0.6	15
135	Cycling, a tool for locomotor recovery after motor lesions?. NeuroRehabilitation, 2008, 23, 67-80.	0.5	12
136	Intermanual Differences in Movement-related Interhemispheric Inhibition. Journal of Cognitive Neuroscience, 2007, 19, 204-213.	1.1	204
137	Neurophysiological Mechanisms Involved in Transfer of Procedural Knowledge. Journal of Neuroscience, 2007, 27, 1045-1053.	1.7	135
138	Interhemispheric Inhibition in Distal and Proximal Arm Representations in the Primary Motor Cortex. Journal of Neurophysiology, 2007, 97, 2511-2515.	0.9	81
139	Transcranial slow oscillatory stimulation drives consolidation of declarative memory by synchronization of the neocortex. Future Neurology, 2007, 2, 173-177.	0.9	0
140	Somatosensory Stimulation Enhances the Effects of Training Functional Hand Tasks in Patients With Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 2007, 88, 1369-1376.	0.5	193
141	Brain-computer interfaces: communication and restoration of movement in paralysis. Journal of Physiology, 2007, 579, 621-636.	1.3	597
142	The physiology of brain-computer interfaces. Journal of Physiology, 2007, 579, 570-570.	1.3	3
143	Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. Journal of Neurology, 2007, 254, 333-339.	1.8	132
144	Encoding a motor memory in the older adult by action observation. NeuroImage, 2006, 29, 677-684.	2.1	158

#	Article	IF	Citations
145	Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 2006, 117, 845-850.	0.7	1,435
146	Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clinical Neurophysiology, 2006, 117, 1682-1691.	0.7	46
147	Influence of Electric Somatosensory Stimulation on Paretic-Hand Function in Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 2006, 87, 351-357.	0.5	151
148	Translational Studies in Neurorehabilitation: From Bench to Bedside. Cognitive and Behavioral Neurology, 2006, 19, 1-10.	0.5	33
149	Volition and Imagery in Neurorehabilitation. Cognitive and Behavioral Neurology, 2006, 19, 135-140.	0.5	97
150	Noninvasive brain stimulation in stroke rehabilitation. NeuroRx, 2006, 3, 474-481.	6.0	142
151	MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing. Journal of Neuroscience Methods, 2006, 155, 300-307.	1.3	49
152	Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?. Lancet Neurology, The, 2006, 5, 708-712.	4.9	762
153	Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain, 2006, 129, 791-808.	3.7	403
154	Effects of Somatosensory Stimulation on Use-Dependent Plasticity in Chronic Stroke. Stroke, 2006, 37, 246-247.	1.0	115
155	Drivers of brain plasticity. Current Opinion in Neurology, 2005, 18, 667-674.	1.8	144
156	Role of Voluntary Drive in Encoding an Elementary Motor Memory. Journal of Neurophysiology, 2005, 93, 1099-1103.	0.9	148
157	Dopaminergic influences on formation of a motor memory. Annals of Neurology, 2005, 58, 121-130.	2.8	171
158	High Level Bilateral Talks. Focus on "Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Interhemispheric Inhibition― Journal of Neurophysiology, 2005, 94, 1664-1665.	0.9	3
159	Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 2005, 128, 490-499.	3.7	963
160	Functional Neuroimaging in Motor Recovery After Stroke. Topics in Stroke Rehabilitation, 2005, 12, 15-21.	1.0	14
161	Enduring representational plasticity after somatosensory stimulation. NeuroImage, 2005, 27, 872-884.	2.1	112
162	Transcallosal inhibition in chronic subcortical stroke. NeuroImage, 2005, 28, 940-946.	2.1	282

#	Article	IF	CITATIONS
163	Improvement of Motor Function with Noninvasive Cortical Stimulation in a Patient with Chronic Stroke. Neurorehabilitation and Neural Repair, 2005, 19, 14-19.	1.4	237
164	Formation of a Motor Memory by Action Observation. Journal of Neuroscience, 2005, 25, 9339-9346.	1.7	348
165	Training-dependent plasticity in patients with multiple sclerosis. Brain, 2004, 127, 2506-2517.	3.7	101
166	Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nature Neuroscience, 2004, 7, 1266-1270.	7.1	256
167	Functional connectivity between somatosensory and visual cortex in early blind humans. European Journal of Neuroscience, 2004, 20, 1923-1927.	1.2	135
168	Cross-modal plasticity and deafferentation. Cognitive Processing, 2004, 5, 152.	0.7	2
169	Reorganization of the human ipsilesional premotor cortex after stroke. Brain, 2004, 127, 747-758.	3.7	381
170	Mechanisms Underlying Recovery of Motor Function After Stroke. Archives of Neurology, 2004, 61, 1844-8.	4.9	527
171	Modulation of H-reflex excitability by tetanic stimulation. Clinical Neurophysiology, 2004, 115, 858-861.	0.7	33
172	Kinematic specificity of cortical reorganization associated with motor training. NeuroImage, 2004, 21, 1182-1187.	2.1	51
173	Enhancing Encoding of a Motor Memory in the Primary Motor Cortex By Cortical Stimulation. Journal of Neurophysiology, 2004, 91, 2110-2116.	0.9	194
174	Neuroimaging in Stroke Recovery: A Position Paper from the First International Workshop on Neuroimaging and Stroke Recovery. Cerebrovascular Diseases, 2004, 18, 260-267.	0.8	115
175	NEUROPLASTICITY. Series on Bioengineering and Biomedical Engineering, 2004, , 281-301.	0.1	1
176	Modulation of motor function and cortical plasticity in health and disease. Restorative Neurology and Neuroscience, 2004, 22, 261-8.	0.4	38
177	Constraint-Induced Therapy in Stroke: Magnetic-Stimulation Motor Maps and Cerebral Activation. Neurorehabilitation and Neural Repair, 2003, 17, 48-57.	1.4	267
178	Motor learning elicited by voluntary drive. Brain, 2003, 126, 866-872.	3.7	555
179	A Temporally Asymmetric Hebbian Rule Governing Plasticity in the Human Motor Cortex. Journal of Neurophysiology, 2003, 89, 2339-2345.	0.9	528
180	Chapter 24 Bihemispheric plasticity after acute hand deafferentation. Supplements To Clinical Neurophysiology, 2003, 56, 232-241.	2.1	5

#	Article	IF	CITATIONS
181	Practice-induced plasticity in the human motor cortex. , 2003, , 90-106.		7
182	Functional relevance of cortical plasticity., 2003,, 231-245.		0
183	Cortical excitability changes induced by deafferentation of the contralateral hemisphere. Brain, 2002, 125, 1402-1413.	3.7	176
184	Chapter 32 Modulation of cortical plasticity. Supplements To Clinical Neurophysiology, 2002, 54, 210-215.	2.1	0
185	Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex. Clinical Neurophysiology, 2002, 113, 1308-1315.	0.7	41
186	Visual and motor cortex excitability: a transcranial magnetic stimulation study. Clinical Neurophysiology, 2002, 113, 1501-1504.	0.7	101
187	Modulation of slow cortical potentials by transcranial magnetic stimulation in humans. Neuroscience Letters, 2002, 324, 205-208.	1.0	14
188	Enhancement of human cortico-motoneuronal excitability by the selective norepinephrine reuptake inhibitor reboxetine. Neuroscience Letters, 2002, 330, 231-234.	1.0	72
189	Stimulation-Induced Within-Representation and Across-Representation Plasticity in Human Motor Cortex. Journal of Neuroscience, 2002, 22, 5563-5571.	1.7	47
190	Mechanisms Influencing Acquisition and Recall of Motor Memories. Journal of Neurophysiology, 2002, 88, 2114-2123.	0.9	116
191	Integrated Motor Cortical Control of Task-Related Muscles During Pointing in Humans. Journal of Neurophysiology, 2002, 87, 3006-3017.	0.9	90
192	Modulation of rodent cortical motor excitability by somatosensory input. Experimental Brain Research, 2002, 142, 562-569.	0.7	87
193	Modulation of human corticomotor excitability by somatosensory input. Journal of Physiology, 2002, 540, 623-633.	1.3	357
194	Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. Journal of Physiology, 2002, 543, 699-708.	1.3	557
195	Enhanced tactile spatial acuity and cortical processing during acute hand deafferentation. Nature Neuroscience, 2002, 5, 936-938.	7.1	139
196	Time Course of Determination of Movement Direction in the Reaction Time Task in Humans. Journal of Neurophysiology, 2001, 86, 1195-1201.	0.9	23
197	Reorganization of Motor and Somatosensory Cortex in Upper Extremity Amputees with Phantom Limb Pain. Journal of Neuroscience, 2001, 21, 3609-3618.	1.7	399
198	Transcranial magnetic stimulation in the rat. Experimental Brain Research, 2001, 140, 112-121.	0.7	82

#	Article	IF	Citations
199	Mechanisms underlying human motor system plasticity. Muscle and Nerve, 2001, 24, 602-613.	1.0	67
200	Reproducibility of intracortical inhibition and facilitation using the paired-pulse paradigm. Muscle and Nerve, 2000, 23, 1594-1597.	1.0	90
201	A window into the role of inhibitory and excitatory mechanisms of perception?. Journal of Physiology, 2000, 529, 283-283.	1.3	6
202	A Positron Emission Tomographic Study of Auditory Localization in the Congenitally Blind. Journal of Neuroscience, 2000, 20, 2664-2672.	1.7	442
203	Motor cortex excitability in patients with cerebellar degeneration. Clinical Neurophysiology, 2000, 111, 1157-1164.	0.7	19
204	Reproducibility of intracortical inhibition and facilitation using the paired-pulse paradigm. , 2000, 23, 1594.		1
205	Period of susceptibility for cross-modal plasticity in the blind. Annals of Neurology, 1999, 45, 451-460.	2.8	309
206	Plasticity of cortical hand muscle representation in patients with hemifacial spasm. Neuroscience Letters, 1999, 272, 33-36.	1.0	24
207	Multimodal output mapping of human central motor representation on different spatial scales. Journal of Physiology, 1998, 512, 163-179.	1.3	114
208	Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. Journal of Physiology, 1998, 510, 249-259.	1.3	219
209	Time course of corticospinal excitability in reaction time and self-paced movements. Annals of Neurology, 1998, 44, 317-325.	2.8	358
210	Mechanisms of Cortical Reorganization in Lower-Limb Amputees. Journal of Neuroscience, 1998, 18, 3443-3450.	1.7	275
211	Modulation of Plasticity in Human Motor Cortex after Forearm Ischemic Nerve Block. Journal of Neuroscience, 1998, 18, 1115-1123.	1.7	336
212	Mechanisms of Deafferentation-Induced Plasticity in Human Motor Cortex. Journal of Neuroscience, 1998, 18, 7000-7007.	1.7	379
213	Intracortical Inhibition and Facilitation in Different Representations of the Human Motor Cortex. Journal of Neurophysiology, 1998, 80, 2870-2881.	0.9	419
214	Rapid Plasticity of Human Cortical Movement Representation Induced by Practice. Journal of Neurophysiology, 1998, 79, 1117-1123.	0.9	976
215	Studies of Neuroplasticity With Transcranial Magnetic Stimulation. Journal of Clinical Neurophysiology, 1998, 15, 305-324.	0.9	161
216	Cortical mechanisms of recovery of function after stroke. NeuroRehabilitation, 1998, 10, 131-142.	0.5	29

#	Article	IF	CITATIONS
217	Role of the Ipsilateral Motor Cortex in Voluntary Movement. Canadian Journal of Neurological Sciences, 1997, 24, 284-291.	0.3	180
218	Steady-state movement-related cortical potentials: a new approach to assessing cortical activity associated with fast repetitive finger movements. Electroencephalography and Clinical Neurophysiology, 1997, 102, 106-113.	0.3	71
219	Functional relevance of cross-modal plasticity in blind humans. Nature, 1997, 389, 180-183.	13.7	920
220	Involvement of the ipsilateral motor cortex in finger movements of different complexities. Annals of Neurology, 1997, 41, 247-254.	2.8	297
221	Limitations of Electromyography and Magnetic Stimulation for Assessing Laryngeal Muscle Control. Annals of Otology, Rhinology and Laryngology, 1994, 103, 16-27.	0.6	30
222	Central fatigue as revealed by postexercise decrement of motor evoked potentials. Muscle and Nerve, 1994, 17, 713-719.	1.0	145
223	Modulation of motor cortical outputs to the reading hand of braille readers. Annals of Neurology, 1993, 34, 33-37.	2.8	360
224	Postexercise depression of motor evoked potentials: a measure of central nervous system fatigue. Experimental Brain Research, 1993, 93, 181-4.	0.7	201
225	Rapid modulation of human cortical motor outputs following ischaemic nerve block. Brain, 1993, 116, 511-525.	3.7	288
226	SIMPLE REACTION TIME TO FOCAL TRANSCRANIAL MAGNETIC STIMULATION. Brain, 1992, 115, 109-122.	3.7	97
227	Cortical map plasticity in humans. Trends in Neurosciences, 1992, 15, 13-14.	4.2	16
228	A theoretical comparison of electric and magnetic stimulation of the brain. Annals of Biomedical Engineering, 1991, 19, 317-328.	1.3	63
229	A theoretical calculation of the electric field induced by magnetic stimulation of a peripheral nerve. Muscle and Nerve, 1990, 13, 734-741.	1.0	109
230	Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalography and Clinical Neurophysiology, 1990, 75, 350-357.	0.3	368
231	A method for determining optimal interelectrode spacing for cerebral topographic mapping. Electroencephalography and Clinical Neurophysiology, 1989, 72, 355-361.	0.3	78
232	Methodology for non-invasive mapping of human motor cortex with electrical stimulation. Electroencephalography and Clinical Neurophysiology, 1988, 69, 403-411.	0.3	43
233	From bench to bedside: influence of theories of plasticity on human neurorehabilitation. , 0, , 248-266.		1