
## Leonardo G Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3212159/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 2008, 1, 206-223.                                                                                                                                  | 0.7  | 2,538     |
| 2  | Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 2006, 117, 845-850.                                                                      | 0.7  | 1,435     |
| 3  | Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for<br>Motor Learning. Neuron, 2010, 66, 198-204.                                                                                      | 3.8  | 1,177     |
| 4  | Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an<br>effect on consolidation. Proceedings of the National Academy of Sciences of the United States of<br>America, 2009, 106, 1590-1595. | 3.3  | 1,168     |
| 5  | Neuroplasticity Subserving Motor Skill Learning. Neuron, 2011, 72, 443-454.                                                                                                                                                           | 3.8  | 1,024     |
| 6  | Rapid Plasticity of Human Cortical Movement Representation Induced by Practice. Journal of Neurophysiology, 1998, 79, 1117-1123.                                                                                                      | 0.9  | 976       |
| 7  | Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 2005, 128, 490-499.                                                                                                                  | 3.7  | 963       |
| 8  | Functional relevance of cross-modal plasticity in blind humans. Nature, 1997, 389, 180-183.                                                                                                                                           | 13.7 | 920       |
| 9  | Harnessing neuroplasticity for clinical applications. Brain, 2011, 134, 1591-1609.                                                                                                                                                    | 3.7  | 907       |
| 10 | Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?. Lancet Neurology, The, 2006, 5, 708-712.                                                                                                 | 4.9  | 762       |
| 11 | Brain–machine interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology,<br>2013, 74, 100-108.                                                                                                              | 2.8  | 754       |
| 12 | Effectiveness of Virtual Reality Using Wii Gaming Technology in Stroke Rehabilitation. Stroke, 2010, 41,<br>1477-1484.                                                                                                                | 1.0  | 627       |
| 13 | Brain-computer interfaces: communication and restoration of movement in paralysis. Journal of Physiology, 2007, 579, 621-636.                                                                                                         | 1.3  | 597       |
| 14 | Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. Journal of Physiology, 2002, 543, 699-708.                                                                     | 1.3  | 557       |
| 15 | Motor learning elicited by voluntary drive. Brain, 2003, 126, 866-872.                                                                                                                                                                | 3.7  | 555       |
| 16 | Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke. Stroke,<br>2008, 39, 910-917.                                                                                                                | 1.0  | 537       |
| 17 | Consensus: Motor cortex plasticity protocols. Brain Stimulation, 2008, 1, 164-182.                                                                                                                                                    | 0.7  | 529       |
| 18 | A Temporally Asymmetric Hebbian Rule Governing Plasticity in the Human Motor Cortex. Journal of<br>Neurophysiology, 2003, 89, 2339-2345.                                                                                              | 0.9  | 528       |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mechanisms Underlying Recovery of Motor Function After Stroke. Archives of Neurology, 2004, 61, 1844-8.                                                                 | 4.9 | 527       |
| 20 | Neuroplasticity in the context of motor rehabilitation after stroke. Nature Reviews Neurology, 2011, 7, 76-85.                                                          | 4.9 | 500       |
| 21 | Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. Journal of Physiology, 2008, 586, 325-351.     | 1.3 | 480       |
| 22 | Noninvasive brain stimulation: from physiology to network dynamics and back. Nature Neuroscience, 2013, 16, 838-844.                                                    | 7.1 | 466       |
| 23 | A Positron Emission Tomographic Study of Auditory Localization in the Congenitally Blind. Journal of Neuroscience, 2000, 20, 2664-2672.                                 | 1.7 | 442       |
| 24 | Intracortical Inhibition and Facilitation in Different Representations of the Human Motor Cortex.<br>Journal of Neurophysiology, 1998, 80, 2870-2881.                   | 0.9 | 419       |
| 25 | Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain, 2006, 129, 791-808. | 3.7 | 403       |
| 26 | Reorganization of Motor and Somatosensory Cortex in Upper Extremity Amputees with Phantom Limb<br>Pain. Journal of Neuroscience, 2001, 21, 3609-3618.                   | 1.7 | 399       |
| 27 | Reorganization of the human ipsilesional premotor cortex after stroke. Brain, 2004, 127, 747-758.                                                                       | 3.7 | 381       |
| 28 | Mechanisms of Deafferentation-Induced Plasticity in Human Motor Cortex. Journal of Neuroscience, 1998, 18, 7000-7007.                                                   | 1.7 | 379       |
| 29 | Effects of coil design on delivery of focal magnetic stimulation. Technical considerations.<br>Electroencephalography and Clinical Neurophysiology, 1990, 75, 350-357.  | 0.3 | 368       |
| 30 | Modulation of motor cortical outputs to the reading hand of braille readers. Annals of Neurology, 1993, 34, 33-37.                                                      | 2.8 | 360       |
| 31 | Time course of corticospinal excitability in reaction time and self-paced movements. Annals of Neurology, 1998, 44, 317-325.                                            | 2.8 | 358       |
| 32 | Modulation of human corticomotor excitability by somatosensory input. Journal of Physiology, 2002,<br>540, 623-633.                                                     | 1.3 | 357       |
| 33 | Formation of a Motor Memory by Action Observation. Journal of Neuroscience, 2005, 25, 9339-9346.                                                                        | 1.7 | 348       |
| 34 | State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulation, 2008, 1, 151-163.             | 0.7 | 342       |
| 35 | Modulation of Plasticity in Human Motor Cortex after Forearm Ischemic Nerve Block. Journal of<br>Neuroscience, 1998, 18, 1115-1123.                                     | 1.7 | 336       |
| 36 | Period of susceptibility for cross-modal plasticity in the blind. Annals of Neurology, 1999, 45, 451-460.                                                               | 2.8 | 309       |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimulation, 2009, 2, 58-80.                                                                                                 | 0.7 | 299       |
| 38 | Involvement of the ipsilateral motor cortex in finger movements of different complexities. Annals of Neurology, 1997, 41, 247-254.                                                                        | 2.8 | 297       |
| 39 | Rapid modulation of human cortical motor outputs following ischaemic nerve block. Brain, 1993, 116, 511-525.                                                                                              | 3.7 | 288       |
| 40 | Transcallosal inhibition in chronic subcortical stroke. NeuroImage, 2005, 28, 940-946.                                                                                                                    | 2.1 | 282       |
| 41 | Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurology, The, 2016, 15, 1019-1027. | 4.9 | 279       |
| 42 | Mechanisms of Cortical Reorganization in Lower-Limb Amputees. Journal of Neuroscience, 1998, 18, 3443-3450.                                                                                               | 1.7 | 275       |
| 43 | Effects of tDCS on motor learning and memory formation: A consensus and critical position paper.<br>Clinical Neurophysiology, 2017, 128, 589-603.                                                         | 0.7 | 275       |
| 44 | Constraint-Induced Therapy in Stroke: Magnetic-Stimulation Motor Maps and Cerebral Activation.<br>Neurorehabilitation and Neural Repair, 2003, 17, 48-57.                                                 | 1.4 | 267       |
| 45 | Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2017, 12, 480-493.                           | 2.9 | 266       |
| 46 | Reward Improves Long-Term Retention of a Motor Memory through Induction of Offline Memory<br>Gains. Current Biology, 2011, 21, 557-562.                                                                   | 1.8 | 265       |
| 47 | Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nature Neuroscience, 2004, 7, 1266-1270.                                                     | 7.1 | 256       |
| 48 | Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease, 2015, 83, 172-179.                                                                                                    | 2.1 | 256       |
| 49 | Mechanisms Underlying Functional Changes in the Primary Motor Cortex Ipsilateral to an Active<br>Hand. Journal of Neuroscience, 2008, 28, 5631-5640.                                                      | 1.7 | 238       |
| 50 | Improvement of Motor Function with Noninvasive Cortical Stimulation in a Patient with Chronic Stroke. Neurorehabilitation and Neural Repair, 2005, 19, 14-19.                                             | 1.4 | 237       |
| 51 | Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation?. Brain Stimulation, 2008, 1, 363-369.                           | 0.7 | 225       |
| 52 | Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. Journal of Physiology, 1998, 510, 249-259.                                      | 1.3 | 219       |
| 53 | Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimulation, 2008, 1, 326-336.                                   | 0.7 | 218       |
| 54 | Intermanual Differences in Movement-related Interhemispheric Inhibition. Journal of Cognitive Neuroscience, 2007, 19, 204-213.                                                                            | 1.1 | 204       |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of Action Observation on Physical Training After Stroke. Stroke, 2008, 39, 1814-1820.                                                                                                     | 1.0 | 204       |
| 56 | Postexercise depression of motor evoked potentials: a measure of central nervous system fatigue.<br>Experimental Brain Research, 1993, 93, 181-4.                                                 | 0.7 | 201       |
| 57 | Enhancing Encoding of a Motor Memory in the Primary Motor Cortex By Cortical Stimulation. Journal of Neurophysiology, 2004, 91, 2110-2116.                                                        | 0.9 | 194       |
| 58 | Somatosensory Stimulation Enhances the Effects of Training Functional Hand Tasks in Patients With<br>Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 2007, 88, 1369-1376.       | 0.5 | 193       |
| 59 | Role of the Ipsilateral Motor Cortex in Voluntary Movement. Canadian Journal of Neurological<br>Sciences, 1997, 24, 284-291.                                                                      | 0.3 | 180       |
| 60 | Rewiring the Brain. Neurorehabilitation and Neural Repair, 2012, 26, 282-292.                                                                                                                     | 1.4 | 177       |
| 61 | Cortical excitability changes induced by deafferentation of the contralateral hemisphere. Brain, 2002, 125, 1402-1413.                                                                            | 3.7 | 176       |
| 62 | Neuroenhancement of the aging brain: Restoring skill acquisition in old subjects. Annals of Neurology, 2013, 73, 10-15.                                                                           | 2.8 | 176       |
| 63 | Brain–Computer Interface–Based Communication in the Completely Locked-In State. PLoS Biology, 2017,<br>15, e1002593.                                                                              | 2.6 | 176       |
| 64 | Modulation of Training by Single-Session Transcranial Direct Current Stimulation to the Intact<br>Motor Cortex Enhances Motor Skill Acquisition of the Paretic Hand. Stroke, 2012, 43, 2185-2191. | 1.0 | 175       |
| 65 | Dopaminergic influences on formation of a motor memory. Annals of Neurology, 2005, 58, 121-130.                                                                                                   | 2.8 | 171       |
| 66 | Effects of Combined Peripheral Nerve Stimulation and Brain Polarization on Performance of a Motor<br>Sequence Task After Chronic Stroke. Stroke, 2009, 40, 1764-1771.                             | 1.0 | 171       |
| 67 | Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery.<br>Frontiers in Human Neuroscience, 2014, 8, 378.                                            | 1.0 | 162       |
| 68 | Studies of Neuroplasticity With Transcranial Magnetic Stimulation. Journal of Clinical<br>Neurophysiology, 1998, 15, 305-324.                                                                     | 0.9 | 161       |
| 69 | Effects of different viewing perspectives on somatosensory activations during observation of touch.<br>Human Brain Mapping, 2009, 30, 2722-2730.                                                  | 1.9 | 159       |
| 70 | Encoding a motor memory in the older adult by action observation. NeuroImage, 2006, 29, 677-684.                                                                                                  | 2.1 | 158       |
| 71 | Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiology of Aging, 2010, 31, 2160-2168.                           | 1.5 | 154       |
| 72 | Influence of Electric Somatosensory Stimulation on Paretic-Hand Function in Chronic Stroke.<br>Archives of Physical Medicine and Rehabilitation, 2006, 87, 351-357.                               | 0.5 | 151       |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Role of Voluntary Drive in Encoding an Elementary Motor Memory. Journal of Neurophysiology, 2005,<br>93, 1099-1103.                                                                   | 0.9 | 148       |
| 74 | Common mechanisms of human perceptual and motor learning. Nature Reviews Neuroscience, 2012, 13, 658-664.                                                                             | 4.9 | 148       |
| 75 | Central fatigue as revealed by postexercise decrement of motor evoked potentials. Muscle and Nerve, 1994, 17, 713-719.                                                                | 1.0 | 145       |
| 76 | Drivers of brain plasticity. Current Opinion in Neurology, 2005, 18, 667-674.                                                                                                         | 1.8 | 144       |
| 77 | Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimulation, 2018, 11, 465-480.                                     | 0.7 | 144       |
| 78 | Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca's homologue area. Restorative Neurology and Neuroscience, 2011, 29, 141-152.        | 0.4 | 143       |
| 79 | Noninvasive brain stimulation in stroke rehabilitation. NeuroRx, 2006, 3, 474-481.                                                                                                    | 6.0 | 142       |
| 80 | Enhanced tactile spatial acuity and cortical processing during acute hand deafferentation. Nature Neuroscience, 2002, 5, 936-938.                                                     | 7.1 | 139       |
| 81 | Functional connectivity between somatosensory and visual cortex in early blind humans. European<br>Journal of Neuroscience, 2004, 20, 1923-1927.                                      | 1.2 | 135       |
| 82 | Neurophysiological Mechanisms Involved in Transfer of Procedural Knowledge. Journal of Neuroscience, 2007, 27, 1045-1053.                                                             | 1.7 | 135       |
| 83 | Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes.<br>Journal of Neurology, 2007, 254, 333-339.                                           | 1.8 | 132       |
| 84 | Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients.<br>Brain Stimulation, 2008, 1, 370-382.                                         | 0.7 | 131       |
| 85 | Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke.<br>Brain, 2012, 135, 596-614.                                                    | 3.7 | 131       |
| 86 | Effects of Somatosensory Stimulation on Motor Function After Subacute Stroke.<br>Neurorehabilitation and Neural Repair, 2010, 24, 263-272.                                            | 1.4 | 130       |
| 87 | Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. Journal of Neurophysiology, 2011, 106, 652-661.                     | 0.9 | 127       |
| 88 | Biomarkers of Stroke Recovery: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2017, 31, 864-876. | 1.4 | 124       |
| 89 | Time- but Not Sleep-Dependent Consolidation of tDCS-Enhanced Visuomotor Skills. Cerebral Cortex, 2015, 25, 109-117.                                                                   | 1.6 | 119       |
| 90 | Mechanisms Influencing Acquisition and Recall of Motor Memories. Journal of Neurophysiology, 2002, 88, 2114-2123.                                                                     | 0.9 | 116       |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Neuroimaging in Stroke Recovery: A Position Paper from the First International Workshop on<br>Neuroimaging and Stroke Recovery. Cerebrovascular Diseases, 2004, 18, 260-267.        | 0.8 | 115       |
| 92  | Effects of Somatosensory Stimulation on Use-Dependent Plasticity in Chronic Stroke. Stroke, 2006, 37, 246-247.                                                                      | 1.0 | 115       |
| 93  | Multimodal output mapping of human central motor representation on different spatial scales.<br>Journal of Physiology, 1998, 512, 163-179.                                          | 1.3 | 114       |
| 94  | Improvement of spatial tactile acuity by transcranial direct current stimulation. Clinical Neurophysiology, 2008, 119, 805-811.                                                     | 0.7 | 113       |
| 95  | Enduring representational plasticity after somatosensory stimulation. NeuroImage, 2005, 27, 872-884.                                                                                | 2.1 | 112       |
| 96  | A theoretical calculation of the electric field induced by magnetic stimulation of a peripheral nerve.<br>Muscle and Nerve, 1990, 13, 734-741.                                      | 1.0 | 109       |
| 97  | Contribution of Transcranial Magnetic Stimulation to the Understanding of Functional Recovery<br>Mechanisms After Stroke. Neurorehabilitation and Neural Repair, 2010, 24, 125-135. | 1.4 | 108       |
| 98  | Recovery of function in humans: Cortical stimulation and pharmacological treatments after stroke.<br>Neurobiology of Disease, 2010, 37, 243-251.                                    | 2.1 | 106       |
| 99  | Modification of Existing Human Motor Memories Is Enabled by Primary Cortical Processing during<br>Memory Reactivation. Current Biology, 2010, 20, 1545-1549.                        | 1.8 | 105       |
| 100 | Visual and motor cortex excitability: a transcranial magnetic stimulation study. Clinical Neurophysiology, 2002, 113, 1501-1504.                                                    | 0.7 | 101       |
| 101 | Training-dependent plasticity in patients with multiple sclerosis. Brain, 2004, 127, 2506-2517.                                                                                     | 3.7 | 101       |
| 102 | SIMPLE REACTION TIME TO FOCAL TRANSCRANIAL MAGNETIC STIMULATION. Brain, 1992, 115, 109-122.                                                                                         | 3.7 | 97        |
| 103 | Volition and Imagery in Neurorehabilitation. Cognitive and Behavioral Neurology, 2006, 19, 135-140.                                                                                 | 0.5 | 97        |
| 104 | Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Frontiers in Aging Neuroscience, 2014, 6, 289.           | 1.7 | 97        |
| 105 | A Rapid Form of Offline Consolidation in Skill Learning. Current Biology, 2019, 29, 1346-1351.e4.                                                                                   | 1.8 | 91        |
| 106 | Reproducibility of intracortical inhibition and facilitation using the paired-pulse paradigm. Muscle and Nerve, 2000, 23, 1594-1597.                                                | 1.0 | 90        |
| 107 | Integrated Motor Cortical Control of Task-Related Muscles During Pointing in Humans. Journal of Neurophysiology, 2002, 87, 3006-3017.                                               | 0.9 | 90        |
| 108 | Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI<br>Connectivity-Based Neurofeedback. Neurorehabilitation and Neural Repair, 2016, 30, 671-675.      | 1.4 | 89        |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Transcranial magnetic stimulation in mild to severe hemiparesis early after stroke: a proof of<br>principle and novel approach to improve motor function. Journal of Neurology, 2012, 259, 1399-1405.                       | 1.8 | 88        |
| 110 | Modulation of rodent cortical motor excitability by somatosensory input. Experimental Brain Research, 2002, 142, 562-569.                                                                                                   | 0.7 | 87        |
| 111 | Transcranial magnetic stimulation in the rat. Experimental Brain Research, 2001, 140, 112-121.                                                                                                                              | 0.7 | 82        |
| 112 | Interhemispheric Inhibition in Distal and Proximal Arm Representations in the Primary Motor Cortex.<br>Journal of Neurophysiology, 2007, 97, 2511-2515.                                                                     | 0.9 | 81        |
| 113 | Predicting motor improvement after stroke with clinical assessment and diffusion tensor imaging.<br>Neurology, 2016, 86, 1924-1925.                                                                                         | 1.5 | 80        |
| 114 | Neural plasticity and its contribution to functional recovery. Handbook of Clinical Neurology /<br>Edited By P J Vinken and G W Bruyn, 2013, 110, 3-12.                                                                     | 1.0 | 79        |
| 115 | A method for determining optimal interelectrode spacing for cerebral topographic mapping.<br>Electroencephalography and Clinical Neurophysiology, 1989, 72, 355-361.                                                        | 0.3 | 78        |
| 116 | The olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for highâ€performance sports?. Journal of Physiology, 2008, 586, 65-70.                                                      | 1.3 | 78        |
| 117 | Enhancement of human cortico-motoneuronal excitability by the selective norepinephrine reuptake inhibitor reboxetine. Neuroscience Letters, 2002, 330, 231-234.                                                             | 1.0 | 72        |
| 118 | Steady-state movement-related cortical potentials: a new approach to assessing cortical activity associated with fast repetitive finger movements. Electroencephalography and Clinical Neurophysiology, 1997, 102, 106-113. | 0.3 | 71        |
| 119 | Recovery of motor function after stroke. Developmental Psychobiology, 2012, 54, 254-262.                                                                                                                                    | 0.9 | 71        |
| 120 | Mechanisms of Short-Term Training-Induced Reaching Improvement in Severely Hemiparetic Stroke Patients. Neurorehabilitation and Neural Repair, 2011, 25, 398-411.                                                           | 1.4 | 69        |
| 121 | Noninvasive brain stimulation in neurorehabilitation. Handbook of Clinical Neurology / Edited By P J<br>Vinken and G W Bruyn, 2013, 116, 499-524.                                                                           | 1.0 | 69        |
| 122 | Mechanisms underlying human motor system plasticity. Muscle and Nerve, 2001, 24, 602-613.                                                                                                                                   | 1.0 | 67        |
| 123 | Causal Role of Prefrontal Cortex in Strengthening of Episodic Memories through Reconsolidation.<br>Current Biology, 2013, 23, 2181-2184.                                                                                    | 1.8 | 66        |
| 124 | Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clinical Neurophysiology, 2009, 120, 1859-1865.                                                | 0.7 | 64        |
| 125 | A theoretical comparison of electric and magnetic stimulation of the brain. Annals of Biomedical Engineering, 1991, 19, 317-328.                                                                                            | 1.3 | 63        |
| 126 | Double dissociation of working memory load effects induced by bilateral parietal modulation.<br>Neuropsychologia, 2012, 50, 396-402.                                                                                        | 0.7 | 62        |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Interference with Existing Memories Alters Offline Intrinsic Functional Brain Connectivity. Neuron, 2014, 81, 69-76.                                                         | 3.8 | 61        |
| 128 | tACS Phase Locking of Frontal Midline Theta Oscillations Disrupts Working Memory Performance.<br>Frontiers in Cellular Neuroscience, 2016, 10, 120.                          | 1.8 | 61        |
| 129 | Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning. Neurobiology of Aging, 2016, 39, 210-216.                       | 1.5 | 61        |
| 130 | Brain-Machine Interface in Chronic Stroke: Randomized Trial Long-Term Follow-up.<br>Neurorehabilitation and Neural Repair, 2019, 33, 188-198.                                | 1.4 | 61        |
| 131 | Sensorimotor Oscillatory Phase–Power Interaction Gates Resting Human Corticospinal Output.<br>Cerebral Cortex, 2019, 29, 3766-3777.                                          | 1.6 | 59        |
| 132 | Influence of Somatosensory Input on Interhemispheric Interactions in Patients With Chronic Stroke.<br>Neurorehabilitation and Neural Repair, 2008, 22, 477-485.              | 1.4 | 57        |
| 133 | Interhemispheric Interactions between the Human Primary Somatosensory Cortices. PLoS ONE, 2011, 6, e16150.                                                                   | 1.1 | 56        |
| 134 | Cortico-subcortical neuronal circuitry associated withÂreconsolidation of human procedural memories. Cortex, 2014, 58, 281-288.                                              | 1.1 | 55        |
| 135 | Kinematic specificity of cortical reorganization associated with motor training. NeuroImage, 2004, 21, 1182-1187.                                                            | 2.1 | 51        |
| 136 | Scaling of motor cortical excitability during unimanual force generation. Cortex, 2009, 45, 1065-1071.                                                                       | 1.1 | 51        |
| 137 | Differential Brain Mechanisms of Selection and Maintenance of Information during Working Memory.<br>Journal of Neuroscience, 2019, 39, 3728-3740.                            | 1.7 | 51        |
| 138 | Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Reports, 2021, 35, 109193.                                                                 | 2.9 | 51        |
| 139 | Modulation of motor learning and memory formation by non-invasive cortical stimulation of the primary motor cortex. Neuropsychological Rehabilitation, 2011, 21, 650-675.    | 1.0 | 50        |
| 140 | Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. Journal of Physiology, 2011, 589, 21-28.    | 1.3 | 50        |
| 141 | Modulating reconsolidation: a link to causal systems-level dynamics of human memories. Trends in<br>Cognitive Sciences, 2015, 19, 475-482.                                   | 4.0 | 50        |
| 142 | MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing.<br>Journal of Neuroscience Methods, 2006, 155, 300-307.                    | 1.3 | 49        |
| 143 | Enhancing Hebbian Learning to Control Brain Oscillatory Activity. Cerebral Cortex, 2015, 25, 2409-2415.                                                                      | 1.6 | 49        |
| 144 | Longitudinal Structural and Functional Differences Between Proportional and Poor Motor Recovery<br>After Stroke. Neurorehabilitation and Neural Repair, 2017, 31, 1029-1041. | 1.4 | 49        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Mechanisms of offline motor learning at a microscale of seconds in large-scale crowdsourced data.<br>Npj Science of Learning, 2020, 5, 7.                                                                                  | 1.5 | 49        |
| 146 | Stimulation-Induced Within-Representation and Across-Representation Plasticity in Human Motor Cortex. Journal of Neuroscience, 2002, 22, 5563-5571.                                                                        | 1.7 | 47        |
| 147 | Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clinical<br>Neurophysiology, 2006, 117, 1682-1691.                                                                              | 0.7 | 46        |
| 148 | Motor callosal disconnection in early relapsingâ€remitting multiple sclerosis. Human Brain Mapping,<br>2011, 32, 846-855.                                                                                                  | 1.9 | 44        |
| 149 | Primary Motor Cortex in Stroke. Stroke, 2011, 42, 1004-1009.                                                                                                                                                               | 1.0 | 44        |
| 150 | Methodology for non-invasive mapping of human motor cortex with electrical stimulation.<br>Electroencephalography and Clinical Neurophysiology, 1988, 69, 403-411.                                                         | 0.3 | 43        |
| 151 | The Corticospinal System and Transcranial Magnetic Stimulation in Stroke. Topics in Stroke Rehabilitation, 2009, 16, 254-269.                                                                                              | 1.0 | 43        |
| 152 | Modifying somatosensory processing with non-invasive brain stimulation. Restorative Neurology and Neuroscience, 2011, 29, 427-437.                                                                                         | 0.4 | 43        |
| 153 | Time-Specific Contribution of the Supplementary Motor Area to Intermanual Transfer of Procedural<br>Knowledge. Journal of Neuroscience, 2008, 28, 9664-9669.                                                               | 1.7 | 42        |
| 154 | Learned EEG-based brain self-regulation of motor-related oscillations during application of<br>transcranial electric brain stimulation: feasibility and limitations. Frontiers in Behavioral<br>Neuroscience, 2014, 8, 93. | 1.0 | 42        |
| 155 | Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex. Clinical Neurophysiology, 2002, 113, 1308-1315.                                                  | 0.7 | 41        |
| 156 | Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis. Neurorehabilitation and Neural Repair, 2018, 32, 863-871.                                           | 1.4 | 41        |
| 157 | Transcranial Direct Current Stimulation Enhances Motor Skill Learning but Not Generalization in<br>Chronic Stroke. Neurorehabilitation and Neural Repair, 2018, 32, 295-308.                                               | 1.4 | 40        |
| 158 | Lowâ€Frequency Brain Oscillations Track Motor Recovery in Human Stroke. Annals of Neurology, 2019,<br>86, 853-865.                                                                                                         | 2.8 | 39        |
| 159 | Decoding upper limb residual muscle activity in severe chronic stroke. Annals of Clinical and Translational Neurology, 2015, 2, 1-11.                                                                                      | 1.7 | 38        |
| 160 | Induction of LTD-like corticospinal plasticity by low-frequency rTMS depends on pre-stimulus phase of sensorimotor μ-rhythm. Brain Stimulation, 2020, 13, 1580-1587.                                                       | 0.7 | 38        |
| 161 | Modulation of motor function and cortical plasticity in health and disease. Restorative Neurology and Neuroscience, 2004, 22, 261-8.                                                                                       | 0.4 | 38        |
| 162 | Practice and sleep form different aspects of skill. Nature Communications, 2014, 5, 3407.                                                                                                                                  | 5.8 | 36        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | PreSMA stimulation changes taskâ€free functional connectivity in the frontoâ€basalâ€ganglia that<br>correlates with response inhibition efficiency. Human Brain Mapping, 2016, 37, 3236-3249.               | 1.9 | 36        |
| 164 | A case for the involvement of phonological loop in sentence comprehension. Neuropsychologia, 2010, 48, 4003-4011.                                                                                           | 0.7 | 35        |
| 165 | Modulation of Effects of Intermittent Theta Burst Stimulation Applied Over Primary Motor Cortex<br>(M1) by Conditioning Stimulation of the Opposite M1. Journal of Neurophysiology, 2009, 102, 766-773.     | 0.9 | 34        |
| 166 | Modulation of H-reflex excitability by tetanic stimulation. Clinical Neurophysiology, 2004, 115, 858-861.                                                                                                   | 0.7 | 33        |
| 167 | Translational Studies in Neurorehabilitation: From Bench to Bedside. Cognitive and Behavioral Neurology, 2006, 19, 1-10.                                                                                    | 0.5 | 33        |
| 168 | Stochastic reinforcement benefits skill acquisition. Learning and Memory, 2014, 21, 140-142.                                                                                                                | 0.5 | 31        |
| 169 | Limitations of Electromyography and Magnetic Stimulation for Assessing Laryngeal Muscle Control.<br>Annals of Otology, Rhinology and Laryngology, 1994, 103, 16-27.                                         | 0.6 | 30        |
| 170 | Simultaneous transcranial direct current stimulation (tDCS) and whole-head<br>magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields.<br>NeuroImage, 2016, 140, 33-40. | 2.1 | 30        |
| 171 | Transcranial direct current stimulation facilitates response inhibition through dynamic modulation of the fronto-basal ganglia network. Brain Stimulation, 2020, 13, 96-104.                                | 0.7 | 30        |
| 172 | Neural Substrates of Motor Recovery in Severely Impaired Stroke Patients With Hand Paralysis.<br>Neurorehabilitation and Neural Repair, 2016, 30, 328-338.                                                  | 1.4 | 29        |
| 173 | Cortical mechanisms of recovery of function after stroke. NeuroRehabilitation, 1998, 10, 131-142.                                                                                                           | 0.5 | 29        |
| 174 | A Preliminary Comparison of Motor Learning Across Different Non-invasive Brain Stimulation<br>Paradigms Shows No Consistent Modulations. Frontiers in Neuroscience, 2018, 12, 253.                          | 1.4 | 27        |
| 175 | Transcutaneous spinal direct current stimulation improves locomotor learning in healthy humans.<br>Brain Stimulation, 2019, 12, 628-634.                                                                    | 0.7 | 27        |
| 176 | Plasticity of cortical hand muscle representation in patients with hemifacial spasm. Neuroscience<br>Letters, 1999, 272, 33-36.                                                                             | 1.0 | 24        |
| 177 | Reversed timing-dependent associative plasticity in the human brain through interhemispheric interactions. Journal of Neurophysiology, 2013, 109, 2260-2271.                                                | 0.9 | 24        |
| 178 | Combined Brain and Peripheral Nerve Stimulation in Chronic Stroke Patients With Moderate to Severe<br>Motor Impairment. Neuromodulation, 2018, 21, 176-183.                                                 | 0.4 | 24        |
| 179 | Time Course of Determination of Movement Direction in the Reaction Time Task in Humans. Journal of Neurophysiology, 2001, 86, 1195-1201.                                                                    | 0.9 | 23        |
| 180 | Nonparetic Arm Force Does Not Overinhibit the Paretic Arm in Chronic Poststroke Hemiparesis.<br>Archives of Physical Medicine and Rehabilitation, 2014, 95, 849-856.                                        | 0.5 | 23        |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Practice Structure Improves Unconscious Transitional Memories by Increasing Synchrony in a Premotor Network. Journal of Cognitive Neuroscience, 2015, 27, 1503-1512.         | 1.1 | 21        |
| 182 | Interhemispheric Asymmetry of Corticomotor Excitability After Chronic Cerebellar Infarcts.<br>Cerebellum, 2010, 9, 398-404.                                                  | 1.4 | 20        |
| 183 | Brain Structural Substrates of Reward Dependence during Behavioral Performance. Journal of Neuroscience, 2014, 34, 16433-16441.                                              | 1.7 | 20        |
| 184 | Re-stepping into the same river: competition problem rather than a reconsolidation failure in an established motor skill. Scientific Reports, 2017, 7, 9406.                 | 1.6 | 20        |
| 185 | Lasting deficit in inhibitory control with mild traumatic brain injury. Scientific Reports, 2017, 7, 14902.                                                                  | 1.6 | 20        |
| 186 | Motor cortex excitability in patients with cerebellar degeneration. Clinical Neurophysiology, 2000, 111, 1157-1164.                                                          | 0.7 | 19        |
| 187 | Baseline frontostriatal-limbic connectivity predicts reward-based memory formation. Human Brain<br>Mapping, 2014, 35, 5921-5931.                                             | 1.9 | 19        |
| 188 | Altered Human Memory Modification in the Presence of Normal Consolidation. Cerebral Cortex, 2016, 26, 3828-3837.                                                             | 1.6 | 19        |
| 189 | Cortical map plasticity in humans. Trends in Neurosciences, 1992, 15, 13-14.                                                                                                 | 4.2 | 16        |
| 190 | Plasticity of Sensorimotor Networks. Neuroscientist, 2017, 23, 185-196.                                                                                                      | 2.6 | 16        |
| 191 | NIBS-driven brain plasticity. Archives Italiennes De Biologie, 2015, 152, 247-58.                                                                                            | 0.1 | 16        |
| 192 | Motor Cortical Excitability in Patients with Poststroke Epilepsy. Epilepsia, 2008, 49, 117-124.                                                                              | 2.6 | 15        |
| 193 | Effects of somatosensory stimulation on the excitability of the unaffected hemisphere in chronic stroke patients. Clinics, 2008, 63, 735-740.                                | 0.6 | 15        |
| 194 | Statistical learning occurs during practice while high-order rule learning during rest period. Npj<br>Science of Learning, 2021, 6, 14.                                      | 1.5 | 15        |
| 195 | Modulation of slow cortical potentials by transcranial magnetic stimulation in humans.<br>Neuroscience Letters, 2002, 324, 205-208.                                          | 1.0 | 14        |
| 196 | Functional Neuroimaging in Motor Recovery After Stroke. Topics in Stroke Rehabilitation, 2005, 12, 15-21.                                                                    | 1.0 | 14        |
| 197 | Beta rhythm events predict corticospinal motor output. Scientific Reports, 2019, 9, 18305.                                                                                   | 1.6 | 14        |
| 198 | Handgrip-Related Activation in the Primary Motor Cortex Relates to Underlying Neuronal Metabolism<br>After Stroke. Neurorehabilitation and Neural Repair, 2014, 28, 433-442. | 1.4 | 13        |

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Translational Neurorehabilitation Research in the Third World. Stroke, 2014, 45, 1495-1497.                                                                                | 1.0 | 12        |
| 200 | Crowdsourcing in Cognitive and Systems Neuroscience. Neuroscientist, 2022, 28, 425-437.                                                                                    | 2.6 | 12        |
| 201 | Cycling, a tool for locomotor recovery after motor lesions?. NeuroRehabilitation, 2008, 23, 67-80.                                                                         | 0.5 | 12        |
| 202 | Recrudescence of Focal Stroke Symptoms during Pain Management with Hydromorphone. Frontiers in<br>Neurology, 2016, 7, 50.                                                  | 1.1 | 11        |
| 203 | Phase-dependent offline enhancement of human motor memory. Brain Stimulation, 2021, 14, 873-883.                                                                           | 0.7 | 11        |
| 204 | Phase-dependent transcranial magnetic stimulation of the lesioned hemisphere is accurate after stroke. Brain Stimulation, 2020, 13, 1354-1357.                             | 0.7 | 10        |
| 205 | Temporal similarity perfusion mapping: A standardized and model-free method for detecting perfusion deficits in stroke. PLoS ONE, 2017, 12, e0185552.                      | 1.1 | 9         |
| 206 | Effect of foreknowledge on neural activity of primary ââ,¬Å"goââ,¬Â•responses relates to response<br>stopping and switching. Frontiers in Human Neuroscience, 2015, 9, 34. | 1.0 | 8         |
| 207 | Practice-induced plasticity in the human motor cortex. , 2003, , 90-106.                                                                                                   |     | 7         |
| 208 | Conscious recall of different aspects of skill memory. Frontiers in Behavioral Neuroscience, 2014, 8, 233.                                                                 | 1.0 | 7         |
| 209 | Distributed cortical structural properties contribute to motor cortical excitability and inhibition.<br>Brain Structure and Function, 2018, 223, 3801-3812.                | 1.2 | 7         |
| 210 | Susceptibility of consolidated procedural memory to interference is independent of its active task-based retrieval. PLoS ONE, 2019, 14, e0210876.                          | 1.1 | 7         |
| 211 | Reversing working memory decline in the elderly. Nature Neuroscience, 2019, 22, 686-688.                                                                                   | 7.1 | 7         |
| 212 | A window into the role of inhibitory and excitatory mechanisms of perception?. Journal of Physiology, 2000, 529, 283-283.                                                  | 1.3 | 6         |
| 213 | The Intersection of Offline Learning and Rehabilitation. Frontiers in Human Neuroscience, 2021, 15, 667574.                                                                | 1.0 | 6         |
| 214 | Chapter 24 Bihemispheric plasticity after acute hand deafferentation. Supplements To Clinical Neurophysiology, 2003, 56, 232-241.                                          | 2.1 | 5         |
| 215 | Reward and plasticity: Implications for neurorehabilitation. Handbook of Clinical Neurology / Edited<br>By P J Vinken and G W Bruyn, 2022, 184, 331-340.                   | 1.0 | 5         |
| 216 | Crossmodal encoding of motor sequence memories. Psychological Research, 2015, 79, 318-326.                                                                                 | 1.0 | 4         |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Plasticity and recovery of function. Handbook of Clinical Neurology / Edited By P J Vinken and G W<br>Bruyn, 2019, 163, 473-483.                                                                     | 1.0 | 4         |
| 218 | Treatment of Upper Limb Paresis With Repetitive Peripheral Nerve Sensory Stimulation and Motor<br>Training: Study Protocol for a Randomized Controlled Trial. Frontiers in Neurology, 2020, 11, 196. | 1.1 | 4         |
| 219 | High Level Bilateral Talks. Focus on "Effect of Low-Frequency Repetitive Transcranial Magnetic<br>Stimulation on Interhemispheric Inhibition― Journal of Neurophysiology, 2005, 94, 1664-1665.       | 0.9 | 3         |
| 220 | The physiology of brain-computer interfaces. Journal of Physiology, 2007, 579, 570-570.                                                                                                              | 1.3 | 3         |
| 221 | Brain–machine interfaces and transcranial stimulation. Handbook of Clinical Neurology / Edited By P J<br>Vinken and G W Bruyn, 2012, 109, 435-444.                                                   | 1.0 | 3         |
| 222 | Cross-modal plasticity and deafferentation. Cognitive Processing, 2004, 5, 152.                                                                                                                      | 0.7 | 2         |
| 223 | Repetitive Peripheral Sensory Stimulation as an Add-On Intervention for Upper Limb Rehabilitation in Stroke: A Randomized Trial. Neurorehabilitation and Neural Repair, 2021, 35, 1059-1064.         | 1.4 | 2         |
| 224 | From bench to bedside: influence of theories of plasticity on human neurorehabilitation. , 0, , 248-266.                                                                                             |     | 1         |
| 225 | 3D-printed head models for navigated non-invasive brain stimulation. Clinical Neurophysiology, 2016, 127, 3341-3342.                                                                                 | 0.7 | 1         |
| 226 | Exploratory studies: a crucial step towards better hypothesisâ€driven confirmatory research in brain stimulation. Journal of Physiology, 2017, 595, 1013-1014.                                       | 1.3 | 1         |
| 227 | The prevalence of the Val66Met polymorphism in musicians: Possible evidence for compensatory neuroplasticity from a pilot study. PLoS ONE, 2021, 16, e0245107.                                       | 1.1 | 1         |
| 228 | Reproducibility of intracortical inhibition and facilitation using the paired-pulse paradigm. , 2000, 23, 1594.                                                                                      |     | 1         |
| 229 | NEUROPLASTICITY. Series on Bioengineering and Biomedical Engineering, 2004, , 281-301.                                                                                                               | 0.1 | 1         |
| 230 | Chapter 32 Modulation of cortical plasticity. Supplements To Clinical Neurophysiology, 2002, 54, 210-215.                                                                                            | 2.1 | 0         |
| 231 | Functional relevance of cortical plasticity. , 2003, , 231-245.                                                                                                                                      |     | 0         |
| 232 | Transcranial slow oscillatory stimulation drives consolidation of declarative memory by synchronization of the neocortex. Future Neurology, 2007, 2, 173-177.                                        | 0.9 | 0         |
| 233 | Neuroplasticity. Series on Bioengineering and Biomedical Engineering, 2017, , 192-212.                                                                                                               | 0.1 | 0         |