Kaitlin E Samocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3211430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced reproductive success is associated with selective constraint on human genes. Nature, 2022, 603, 858-863.	13.7	29
2	Non-coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss-of-function mechanisms. American Journal of Human Genetics, 2021, 108, 1083-1094.	2.6	42
3	Addendum: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2021, 597, E3-E4.	13.7	45
4	The contribution of X-linked coding variation to severe developmental disorders. Nature Communications, 2021, 12, 627.	5.8	33
5	Exome sequencing in schizophrenia-affected parent–offspring trios reveals risk conferred by protein-coding de novo mutations. Nature Neuroscience, 2020, 23, 185-193.	7.1	125
6	Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature, 2020, 586, 757-762.	13.7	343
7	Evaluating drug targets through human loss-of-function genetic variation. Nature, 2020, 581, 459-464.	13.7	115
8	The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020, 581, 434-443.	13.7	6,140
9	A structural variation reference for medical and population genetics. Nature, 2020, 581, 444-451.	13.7	614
10	Transcript expression-aware annotation improves rare variant interpretation. Nature, 2020, 581, 452-458.	13.7	142
11	Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders. Genome Medicine, 2020, 12, 28.	3.6	42
12	Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell, 2020, 180, 568-584.e23.	13.5	1,422
13	Contribution of retrotransposition to developmental disorders. Nature Communications, 2019, 10, 4630.	5.8	43
14	Reply to â€~Selective effects of heterozygous protein-truncating variants'. Nature Genetics, 2019, 51, 3-4.	9.4	6
15	Base-specific mutational intolerance near splice sites clarifies the role of nonessential splice nucleotides. Genome Research, 2018, 28, 968-974.	2.4	41
16	SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nature Genetics, 2017, 49, 238-248.	9.4	131
17	The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Research, 2017, 45, D840-D845.	6.5	587
18	Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nature Genetics, 2017, 49, 504-510.	9.4	298

KAITLIN E SAMOCHA

#	Article	IF	CITATIONS
19	Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature, 2017, 544, 235-239.	13.7	292
20	Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nature Genetics, 2017, 49, 978-985.	9.4	401
21	De Novo Coding Variants Are Strongly Associated with Tourette Disorder. Neuron, 2017, 94, 486-499.e9.	3.8	155
22	Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nature Genetics, 2017, 49, 806-810.	9.4	157
23	A framework for the detection of de novo mutations in family-based sequencing data. European Journal of Human Genetics, 2017, 25, 227-233.	1.4	29
24	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	13.7	9,051
25	Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nature Genetics, 2016, 48, 1107-1111.	9.4	167
26	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	13.7	1,001
27	Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects. Nature Communications, 2016, 7, 13293.	5.8	35
28	Quantifying prion disease penetrance using large population control cohorts. Science Translational Medicine, 2016, 8, 322ra9.	5.8	289
29	Genetic Effect of Chemotherapy Exposure in Children of Testicular Cancer Survivors. Clinical Cancer Research, 2016, 22, 2183-2189.	3.2	15
30	Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nature Genetics, 2016, 48, 552-555.	9.4	326
31	Network Analysis of Genome-Wide Selective Constraint Reveals a Gene Network Active in Early Fetal Brain Intolerant of Mutation. PLoS Genetics, 2016, 12, e1006121.	1.5	24
32	Interpreting <i>de novo</i> Variation in Human Disease Using denovolyzeR. Current Protocols in Human Genetics, 2015, 87, 7.25.1-7.25.15.	3.5	84
33	De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science, 2015, 350, 1262-1266.	6.0	646
34	The Evaluation of Tools Used to Predict the Impact of Missense Variants Is Hindered by Two Types of Circularity. Human Mutation, 2015, 36, 513-523.	1.1	283
35	Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron, 2015, 87, 1215-1233.	3.8	1,219
36	A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5679-88.	3.3	58

KAITLIN E SAMOCHA

#	ARTICLE	IF	CITATIONS
37	A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nature Genetics, 2015, 47, 39-46.	9.4	245
38	Searching for missing heritability: Designing rare variant association studies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E455-64.	3.3	570
39	Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 2014, 515, 209-215.	13.7	2,254
40	A framework for the interpretation of de novo mutation in human disease. Nature Genetics, 2014, 46, 944-950.	9.4	943
41	Autism spectrum disorder severity reflects the average contribution of de novo and familial influences. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15161-15165.	3.3	125
42	Analysis of Rare, Exonic Variation amongst Subjects with Autism Spectrum Disorders and Population Controls. PLoS Genetics, 2013, 9, e1003443.	1.5	133
43	Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 2012, 485, 242-245.	13.7	1,597
44	Fine mapping of QTL for prepulse inhibition in LG/J and SM/J mice using F ₂ and advanced intercross lines. Genes, Brain and Behavior, 2010, 9, 759-767.	1.1	34
45	Genome-Wide Association Studies and the Problem of Relatedness Among Advanced Intercross Lines and Other Highly Recombinant Populations. Genetics, 2010, 185, 1033-1044.	1.2	99
46	Replication of long-bone length QTL in the F9-F10 LG,SM advanced intercross. Mammalian Genome, 2009, 20, 224-235.	1.0	32