Michael J Walter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3211255/publications.pdf

Version: 2024-02-01

567281 713466 2,959 23 15 citations h-index papers

g-index 25 25 25 2159 docs citations times ranked citing authors all docs

21

#	Article	IF	Citations
1	Hydrous silicate melts and the deep mantle H2O cycle. Earth and Planetary Science Letters, 2022, 581, 117408.	4.4	9
2	Comment on "Discovery of davemaoite, CaSiO ₃ -perovskite, as a mineral from the lower mantle― Science, 2022, 376, eabo0882.	12.6	4
3	Geochemistry of Silicate and Oxide Inclusions in Sublithospheric Diamonds. Reviews in Mineralogy and Geochemistry, 2022, 88, 393-450.	4.8	20
4	Hydrous SiO2 in subducted oceanic crust and H2O transport to the core-mantle boundary. Earth and Planetary Science Letters, 2022, 594, 117708.	4.4	10
5	Evaluating the Formation Pressure of Diamondâ€Hosted Majoritic Garnets: A Machine Learning Majorite Barometer. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020604.	3.4	23
6	Slab Transport of Fluids to Deep Focus Earthquake Depthsâ€"Thermal Modeling Constraints and Evidence From Diamonds. AGU Advances, 2021, 2, e2020AV000304.	5.4	35
7	Evidence of Volatileâ€Induced Melting in the Northeast Asian Upper Mantle. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022167.	3.4	3
8	Water transport to the core–mantle boundary. National Science Review, 2021, 8, nwab007.	9.5	14
9	Stability and migration of slab-derived carbonate-rich melts above the transition zone. Earth and Planetary Science Letters, 2020, 531, 116000.	4.4	15
10	Evidence for the stability of ultrahydrous stishovite in Earth's lower mantle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 184-189.	7.1	39
11	Diamonds and the Mantle Geodynamics of Carbon. , 2019, , 89-128.		16
12	CO2-Rich Melts in Earth. , 2019, , 129-162.		10
13	Tetragonal Almandine-Pyrope Phase, TAPP: finally a name for it, the new mineral jeffbenite. Mineralogical Magazine, 2016, 80, 1219-1232.	1.4	41
14	Diamonds from Dachine, French Guiana: A unique record of early Proterozoic subduction. Lithos, 2016, 265, 82-95.	1.4	26
15	Slab melting as a barrier to deep carbon subduction. Nature, 2016, 529, 76-79.	27.8	343
16	Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contributions To Mineralogy and Petrology, 2014, 168, 1.	3.1	87
17	Diamonds and the Geology of Mantle Carbon. Reviews in Mineralogy and Geochemistry, 2013, 75, 355-421.	4.8	360
18	Tetragonal almandine pyrope phase (TAPP): retrograde Mg-perovskite from subducted oceanic crust?. European Journal of Mineralogy, 2012, 24, 587-597.	1.3	22

#	Article	IF	CITATIONS
19	Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011, 334, 54-57.	12.6	294
20	Experimental study of the dehydration of 10-Ã phase, with implications for its H2O content and stability in subducted lithosphere. Contributions To Mineralogy and Petrology, 2011, 162, 1279-1289.	3.1	20
21	Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions To Mineralogy and Petrology, 2010, 160, 489-510.	3.1	165
22	Primary carbonatite melt from deeply subducted oceanic crust. Nature, 2008, 454, 622-625.	27.8	225
23	Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 1998, 39, 29-60.	2.8	1,174