Samuel H Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3210556/publications.pdf Version: 2024-02-01

SAMUEL H WUSON

#	Article	IF	CITATIONS
1	Requirement of mammalian DNA polymerase- \hat{I}^2 in base-excision repair. Nature, 1996, 379, 183-186.	27.8	827
2	Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science, 1994, 264, 1891-1903.	12.6	767
3	Crystal Structures of Human DNA Polymerase β Complexed with Gapped and Nicked DNA:  Evidence for an Induced Fit Mechanism,. Biochemistry, 1997, 36, 11205-11215.	2.5	632
4	Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science, 1994, 264, 1930-1935.	12.6	494
5	AP Endonuclease-Independent DNA Base Excision Repair in Human Cells. Molecular Cell, 2004, 15, 209-220.	9.7	434
6	OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature, 2007, 447, 447-452.	27.8	392
7	Markers for Gene Expression in Cultured Cells from the Nervous System. Journal of Biological Chemistry, 1972, 247, 3159-3169.	3.4	386
8	HTLV-I trans-activator protein, tax, is a trans-repressor of the human beta-polymerase gene. Science, 1990, 247, 1082-1084.	12.6	351
9	Mammalian Abasic Site Base Excision Repair. Journal of Biological Chemistry, 1998, 273, 21203-21209.	3.4	339
10	The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity. Nature, 2000, 405, 807-810.	27.8	316
11	DNA Polymerase β Conducts the Gap-filling Step in Uracil-initiated Base Excision Repair in a Bovine Testis Nuclear Extract. Journal of Biological Chemistry, 1995, 270, 949-957.	3.4	302
12	A role for p53 in base excision repair. EMBO Journal, 2001, 20, 914-923.	7.8	288
13	In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13738-13743.	7.1	284
14	Structure and Mechanism of DNA Polymerase \hat{I}^2 . Chemical Reviews, 2006, 106, 361-382.	47.7	281
15	Crystal Structures of Human DNA Polymerase β Complexed with DNA: Implications for Catalytic Mechanism, Processivity, and Fidelityâ€,‡. Biochemistry, 1996, 35, 12742-12761.	2.5	276
16	Mammalian base excision repair and DNA polymerase beta. Mutation Research DNA Repair, 1998, 407, 203-215.	3.7	249
17	Specific Interaction of DNA Polymerase β and DNA Ligase I in a Multiprotein Base Excision Repair Complex from Bovine Testis. Journal of Biological Chemistry, 1996, 271, 16000-16007.	3.4	242
18	Magnesium-Induced Assembly of a Complete DNA Polymerase Catalytic Complex. Structure, 2006, 14, 757-766.	3.3	242

#	Article	IF	CITATIONS
19	Passing the baton in base excision repair. , 2000, 7, 176-178.		228
20	The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase Â. Nucleic Acids Research, 2006, 34, 745-754.	14.5	228
21	Different DNA Polymerases Are Involved in the Short- and Long-Patch Base Excision Repair in Mammalian Cells. Biochemistry, 1998, 37, 3575-3580.	2.5	214
22	Identification of 5'-deoxyribose phosphate lyase activity in human DNA polymerase and its role in mitochondrial base excision repair in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12244-12248.	7.1	212
23	Biomedical research leaders: report on needs, opportunities, difficulties, education and training, and evaluation Environmental Health Perspectives, 2000, 108, 979-995.	6.0	212
24	Regulation of Acetylcholinesterase in Neuroblastoma Cells. Proceedings of the National Academy of Sciences of the United States of America, 1970, 67, 786-792.	7.1	208
25	Stepwise mechanism of HIV reverse transcriptase: primer function of phosphorothioate oligodeoxynucleotide. Biochemistry, 1989, 28, 1340-1346.	2.5	208
26	Role of DNA Polymerase β in the Excision Step of Long Patch Mammalian Base Excision Repair. Journal of Biological Chemistry, 1999, 274, 13741-13743.	3.4	202
27	Impairment of Proliferating Cell Nuclear Antigen-dependent Apurinic/Apyrimidinic Site Repair on Linear DNA. Journal of Biological Chemistry, 1998, 273, 898-902.	3.4	191
28	XRCC1 and DNA polymerase β in cellular protection against cytotoxic DNA single-strand breaks. Cell Research, 2008, 18, 48-63.	12.0	190
29	FEN1 Stimulation of DNA Polymerase β Mediates an Excision Step in Mammalian Long Patch Base Excision Repair. Journal of Biological Chemistry, 2000, 275, 4460-4466.	3.4	187
30	5'-Deoxyribose Phosphate Lyase Activity of Human DNA Polymerase &igr in Vitro. Science, 2001, 291, 2156-2159.	12.6	187
31	Observing a DNA Polymerase Choose Right from Wrong. Cell, 2013, 154, 157-168.	28.9	186
32	Human DNA Polymerase Î ² Deoxyribose Phosphate Lyase. Journal of Biological Chemistry, 1998, 273, 15263-15270.	3.4	177
33	DNA Polymerase Î ² -mediated Long Patch Base Excision Repair. Journal of Biological Chemistry, 2001, 276, 32411-32414.	3.4	177
34	Photoaffinity Labeling of Mouse Fibroblast Enzymes by a Base Excision Repair Intermediate. Journal of Biological Chemistry, 2001, 276, 25541-25548.	3.4	174
35	Physiology of rat-liver polysomes. The stability of messenger ribonucleic acid and ribosomes. Biochemical Journal, 1967, 103, 556-566.	2.8	173
36	A Structural Basis for Metal Ion Mutagenicity and Nucleotide Selectivity in Human DNA Polymerase βâ€,‡. Biochemistry, 1996, 35, 12762-12777.	2.5	173

#	Article	IF	CITATIONS
37	Mammalian base excision repair by DNA polymerases \hat{I} and $\hat{I}\mu$. Oncogene, 1998, 17, 835-843.	5.9	169
38	Abasic Translesion Synthesis by DNA Polymerase β Violates the "A-rule― Journal of Biological Chemistry, 1997, 272, 2559-2569.	3.4	162
39	Base Excision Repair Intermediates Induce p53-independent Cytotoxic and Genotoxic Responses. Journal of Biological Chemistry, 2003, 278, 39951-39959.	3.4	162
40	Evidence for an Imino Intermediate in the DNA Polymerase β Deoxyribose Phosphate Excision Reaction. Journal of Biological Chemistry, 1996, 271, 17811-17815.	3.4	158
41	The X family portrait: Structural insights into biological functions of X family polymerases. DNA Repair, 2007, 6, 1709-1725.	2.8	158
42	Induction of beta-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells Molecular and Cellular Biology, 1989, 9, 851-853.	2.3	155
43	Enzyme-DNA Interactions Required for Efficient Nucleotide Incorporation and Discrimination in Human DNA Polymerase β. Journal of Biological Chemistry, 1996, 271, 12141-12144.	3.4	153
44	[11] Purification and domain-mapping of mammalian DNA polymerase β. Methods in Enzymology, 1995, 262, 98-107.	1.0	151
45	Substrate Binding by Human Apurinic/Apyrimidinic Endonuclease Indicates a Briggs-Haldane Mechanism. Journal of Biological Chemistry, 1997, 272, 1302-1307.	3.4	150
46	Structural Insights into the Origins of DNA Polymerase Fidelity. Structure, 2003, 11, 489-496.	3.3	144
47	DNA Structure and Aspartate 276 Influence Nucleotide Binding to Human DNA Polymerase β. Journal of Biological Chemistry, 2001, 276, 3408-3416.	3.4	142
48	DNA Polymerase λ Mediates a Back-up Base Excision Repair Activity in Extracts of Mouse Embryonic Fibroblasts. Journal of Biological Chemistry, 2005, 280, 18469-18475.	3.4	141
49	HMGB1 Is a Cofactor in Mammalian Base Excision Repair. Molecular Cell, 2007, 27, 829-841.	9.7	141
50	Apurinic/apyrimidinic (AP) site recognition by the 5′-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22090-22095.	7.1	141
51	Protection against Methylation-induced Cytotoxicity by DNA Polymerase Î ² -Dependent Long Patch Base Excision Repair. Journal of Biological Chemistry, 2000, 275, 2211-2218.	3.4	138
52	Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7465-7470.	7.1	138
53	Expression of human DNA polymerase .beta. in Escherichia coli and characterization of the recombinant enzyme. Biochemistry, 1988, 27, 901-909.	2.5	135
54	Functional Analysis of the Amino-terminal 8-kDa Domain of DNA Polymerase β as Revealed by Site-directed Mutagenesis. Journal of Biological Chemistry, 1998, 273, 11121-11126.	3.4	133

#	Article	IF	CITATIONS
55	Structure of DNA Polymerase β with the Mutagenic DNA Lesion 8-Oxodeoxyguanine Reveals Structural Insights into Its Coding Potential. Structure, 2003, 11, 121-127.	3.3	133
56	Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature, 2015, 517, 635-639.	27.8	133
57	Structural design of a eukaryotic DNA repair polymerase: DNA polymerase β. Mutation Research DNA Repair, 2000, 460, 231-244.	3.7	132
58	DNA Polymerase β and Flap Endonuclease 1 Enzymatic Specificities Sustain DNA Synthesis for Long Patch Base Excision Repair. Journal of Biological Chemistry, 2005, 280, 3665-3674.	3.4	131
59	Coordination of Steps in Single-nucleotide Base Excision Repair Mediated by Apurinic/Apyrimidinic Endonuclease 1 and DNA Polymerase β. Journal of Biological Chemistry, 2007, 282, 13532-13541.	3.4	130
60	Substrate Channeling in Mammalian Base Excision Repair Pathways: Passing the Baton. Journal of Biological Chemistry, 2010, 285, 40479-40488.	3.4	129
61	Studies of the strand-annealing activity of mammalian hnRNP complex protein A1. Biochemistry, 1990, 29, 10717-10722.	2.5	127
62	Critical Role of Magnesium Ions in DNA Polymerase β's Closing and Active Site Assembly. Journal of the American Chemical Society, 2004, 126, 8441-8453.	13.7	127
63	NEIL2-initiated, APE-independent repair of oxidized bases in DNA: Evidence for a repair complex in human cells. DNA Repair, 2006, 5, 1439-1448.	2.8	127
64	Reduced Frameshift Fidelity and Processivity of HIV-1 Reverse Transcriptase Mutants Containing Alanine Substitutions in Helix H of the Thumb Subdomain. Journal of Biological Chemistry, 1995, 270, 19516-19523.	3.4	125
65	The Fidelity of DNA Polymerase β during Distributive and Processive DNA Synthesis. Journal of Biological Chemistry, 1999, 274, 3642-3650.	3.4	125
66	Identification of NG-Methylarginine Residues in Human Heterogeneous RNP Protein A1: Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe Is a Preferred Recognition Motif. Biochemistry, 1997, 36, 5185-5192.	2.5	124
67	Capturing snapshots of APE1 processing DNA damage. Nature Structural and Molecular Biology, 2015, 22, 924-931.	8.2	124
68	Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism. Annual Review of Biochemistry, 2019, 88, 137-162.	11.1	123
69	Structures of DNA Polymerase \hat{I}^2 with Active-Site Mismatches Suggest a Transient Abasic Site Intermediate during Misincorporation. Molecular Cell, 2008, 30, 315-324.	9.7	122
70	Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Research, 2005, 33, 1222-1229.	14.5	121
71	Stimulation of NEIL2-mediated Oxidized Base Excision Repair via YB-1 Interaction during Oxidative Stress. Journal of Biological Chemistry, 2007, 282, 28474-28484.	3.4	121
72	DNA polymerase expression differences in selected human tumors and cell lines. Carcinogenesis, 1999, 20, 1049-1054.	2.8	120

#	Article	IF	CITATIONS
73	Vertebrate POLQ and POLÎ ² Cooperate in Base Excision Repair of Oxidative DNA Damage. Molecular Cell, 2006, 24, 115-125.	9.7	119
74	Direct Interaction between Mammalian DNA Polymerase \hat{I}^2 and Proliferating Cell Nuclear Antigen. Journal of Biological Chemistry, 2002, 277, 31115-31123.	3.4	118
75	Personalized Exposure Assessment: Promising Approaches for Human Environmental Health Research. Environmental Health Perspectives, 2005, 113, 840-848.	6.0	115
76	Structure and Mechanism of DNA Polymerase \hat{l}^2 . Biochemistry, 2014, 53, 2768-2780.	2.5	115
77	The Werner Syndrome Protein Stimulates DNA Polymerase β Strand Displacement Synthesis via Its Helicase Activity. Journal of Biological Chemistry, 2003, 278, 22686-22695.	3.4	113
78	A minor groove binding track in reverse transcriptase. Nature Structural Biology, 1997, 4, 194-197.	9.7	111
79	Efficiency of Correct Nucleotide Insertion Governs DNA Polymerase Fidelity. Journal of Biological Chemistry, 2002, 277, 47393-47398.	3.4	108
80	Domain specific interaction in the XRCC1-DNA polymerase beta complex. Nucleic Acids Research, 2000, 28, 2049-2059.	14.5	105
81	8-OxodGTP Incorporation by DNA Polymerase β Is Modified by Active-Site Residue Asn279â€. Biochemistry, 2000, 39, 1029-1033.	2.5	105
82	Steady-state kinetics of mouse DNA polymerase .beta Biochemistry, 1979, 18, 3401-3406.	2.5	104
83	A Novel DNA Polymerase Activity Found in Association with Intracisternal A-Type Particles. Proceedings of the National Academy of Sciences of the United States of America, 1972, 69, 1531-1536.	7.1	101
84	DNA Polymerase λ Protects Mouse Fibroblasts against Oxidative DNA Damage and Is Recruited to Sites of DNA Damage/Repair. Journal of Biological Chemistry, 2005, 280, 31641-31647.	3.4	101
85	Coordination between Polymerase \hat{l}^2 and FEN1 Can Modulate CAG Repeat Expansion. Journal of Biological Chemistry, 2009, 284, 28352-28366.	3.4	100
86	Modifying the β,γ Leaving-Group Bridging Oxygen Alters Nucleotide Incorporation Efficiency, Fidelity, and the Catalytic Mechanism of DNA Polymerase βâ€. Biochemistry, 2007, 46, 461-471.	2.5	99
87	DNA base excision repair: a mechanism of trinucleotide repeat expansion. Trends in Biochemical Sciences, 2012, 37, 162-172.	7.5	99
88	DNA polymerase III of mouse myeloma. Partial purification and characterization. Biochemistry, 1975, 14, 1006-1020.	2.5	98
89	HMGB1: Roles in base excision repair and related function. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 119-130.	1.9	98
90	Identification and properties of the catalytic domain of mammalian DNA polymerase .beta Biochemistry, 1990, 29, 7156-7159.	2.5	97

#	Article	IF	CITATIONS
91	Environmental health and genomics: visions and implications. Nature Reviews Genetics, 2000, 1, 149-153.	16.3	97
92	Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. Journal of Clinical Investigation, 2004, 113, 1711-1721.	8.2	96
93	[10] Enzymes for modifying and labeling DNA and RNA. Methods in Enzymology, 1987, 152, 94-110.	1.0	94
94	Structural insights into DNA polymerase β fidelity: hold tight if you want it right. Chemistry and Biology, 1998, 5, R7-R13.	6.0	92
95	Human DNA polymerase possesses 5'-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. Nucleic Acids Research, 2009, 37, 1868-1877.	14.5	92
96	Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: Evidence for multiple RNA binding domains and salt-dependent binding mode transitions. Biochemistry, 1991, 30, 2968-2976.	2.5	91
97	Structure of rat DNA polymerase beta revealed by partial amino acid sequencing and cDNA cloning Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5106-5110.	7.1	89
98	Hypersensitivity of DNA polymerase β null mouse fibroblasts reflects accumulation of cytotoxic repair intermediates from site-specific alkyl DNA lesions. DNA Repair, 2003, 2, 27-48.	2.8	88
99	Energy analysis of chemistry for correct insertion by DNA polymerase beta. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13294-13299.	7.1	88
100	Sequence of human DNA polymerase β mRNA obtained through cDNA cloning. Biochemical and Biophysical Research Communications, 1986, 136, 341-347.	2.1	87
101	Mechanism of HIV reverse transcriptase: enzyme-primer interaction as revealed through studies of a dNTP analog, 3'-azido-dTTP. Biochemistry, 1990, 29, 3603-3611.	2.5	87
102	Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines. Nucleic Acids Research, 1998, 26, 2001-2007.	14.5	87
103	Polymerase β simulations suggest that Arg258 rotation is a slow step rather than large subdomain motions per se 1 1Edited by B. Honig. Journal of Molecular Biology, 2002, 317, 651-671.	4.2	87
104	Strategic down-regulation of DNA polymerase β by antisense RNA sensitizes mammalian cells to specific DNA damaging agents. Nucleic Acids Research, 1995, 23, 3810-3815.	14.5	86
105	Ochratoxin A-Induced Mutagenesis in Mammalian Cells Is Consistent with the Production of Oxidative Stress. Chemical Research in Toxicology, 2007, 20, 1031-1037.	3.3	86
106	Folate Deficiency Induces Neurodegeneration and Brain Dysfunction in Mice Lacking Uracil DNA Glycosylase. Journal of Neuroscience, 2008, 28, 7219-7230.	3.6	86
107	Identification of Small Molecule Synthetic Inhibitors of DNA Polymerase β by NMR Chemical Shift Mapping. Journal of Biological Chemistry, 2004, 279, 39736-39744.	3.4	85
108	Mutations associated with base excision repair deficiency and methylation-induced genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6860-6865.	7.1	82

#	Article	IF	CITATIONS
109	AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate. DNA Repair, 2004, 3, 581-591.	2.8	82
110	Structural Insights into DNA Polymerase β Deterrents for Misincorporation Support an Induced-Fit Mechanism for Fidelity. Structure, 2004, 12, 1823-1832.	3.3	81
111	Suicidal cross-linking of PARP-1 to AP site intermediates in cells undergoing base excision repair. Nucleic Acids Research, 2014, 42, 6337-6351.	14.5	81
112	Genomic and evolutionary classification of lung cancer in never smokers. Nature Genetics, 2021, 53, 1348-1359.	21.4	81
113	Studies on DNA α-polymerase of mouse myeloma: partial purification and comparison of three molecular forms of the enzyme. Biochemistry, 1976, 15, 5305-5314.	2.5	80
114	Characterization of DNA polymerase β mRNA: cell-cycle and growth response in cultured human cells. Nucleic Acids Research, 1988, 16, 9587-9596.	14.5	80
115	Protein-protein interactions of HIV-1 reverse transcriptase: implication of central and C-terminal regions in subunit binding. Biochemistry, 1991, 30, 11707-11719.	2.5	80
116	Binary complex crystal structure of DNA polymerase Î ² reveals multiple conformations of the templating 8-oxoguanine lesion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 113-118.	7.1	80
117	Base excision repair deficiency caused by polymerase beta haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens. Cancer Research, 2003, 63, 5799-807.	0.9	80
118	Yeast open reading frame YCR14C encodes a DNA β-polymerase-like enzyme. Nucleic Acids Research, 1993, 21, 5301-5307.	14.5	79
119	Magnesium-cationic Dummy Atom Molecules Enhance Representation of DNA Polymerase β in Molecular Dynamics Simulations: Improved Accuracy in Studies of Structural Features and Mutational Effects. Journal of Molecular Biology, 2007, 366, 687-701.	4.2	79
120	DNA Polymerase β Fidelity:  Halomethylene-Modified Leaving Groups in Pre-Steady-State Kinetic Analysis Reveal Differences at the Chemical Transition State. Biochemistry, 2008, 47, 870-879.	2.5	79
121	DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 703, 18-23.	1.7	79
122	Mammalian DNA β-polymerase in base excision repair of alkylation damage. Progress in Molecular Biology and Translational Science, 2001, 68, 57-74.	1.9	77
123	Backbone dynamics and refined solution structure of the N-terminal domain of DNA polymerase β. Correlation with DNA binding and dRP lyase activity 1 1Edited by P. E. Wright. Journal of Molecular Biology, 2000, 296, 229-253.	4.2	74
124	Involvement of DNA polymerase \hat{l}^2 in protection against the cytotoxicity of oxidative DNA damage. DNA Repair, 2002, 1, 317-333.	2.8	73
125	DNA Polymerases β and λ Mediate Overlapping and Independent Roles in Base Excision Repair in Mouse Embryonic Fibroblasts. PLoS ONE, 2010, 5, e12229.	2.5	73
126	Structural insight into the DNA polymerase β deoxyribose phosphate lyase mechanism. DNA Repair, 2005, 4, 1347-1357.	2.8	71

#	Article	IF	CITATIONS
127	PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1. Nucleic Acids Research, 2017, 45, 12834-12847.	14.5	71
128	Mapping of the 5â€2-2-Deoxyribose-5-phosphate Lyase Active Site in DNA Polymerase β by Mass Spectrometry. Journal of Biological Chemistry, 2000, 275, 10463-10471.	3.4	69
129	Loss of DNA Polymerase β Stacking Interactions with Templating Purines, but Not Pyrimidines, Alters Catalytic Efficiency and Fidelity. Journal of Biological Chemistry, 2002, 277, 8235-8242.	3.4	68
130	Influence of DNA Structure on DNA Polymerase Î ² Active Site Function. Journal of Biological Chemistry, 2004, 279, 31921-31929.	3.4	68
131	Base Excision Repair Defects Invoke Hypersensitivity to PARP Inhibition. Molecular Cancer Research, 2014, 12, 1128-1139.	3.4	68
132	Thermodynamics of Human DNA Ligase I Trimerization and Association with DNA Polymerase β. Journal of Biological Chemistry, 1998, 273, 20540-20550.	3.4	67
133	Intrinsic mutagenic properties of 5-chlorocytosine: A mechanistic connection between chronic inflammation and cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4571-80.	7.1	67
134	Improved conditions for activity gel analysis of DNA polymerase catalytic polypeptides. Analytical Biochemistry, 1983, 135, 318-325.	2.4	66
135	Regulation of DNA Repair Fidelity by Molecular Checkpoints: "Gates―in DNA Polymerase β's Substrate Selectionâ€. Biochemistry, 2006, 45, 15142-15156.	2.5	66
136	Physiology of rat-liver polysomes. Protein synthesis by stable polysomes. Biochemical Journal, 1967, 103, 567-572.	2.8	65
137	Localization of the Deoxyribose Phosphate Lyase Active Site in Human DNA Polymerase Î ¹ by Controlled Proteolysis. Journal of Biological Chemistry, 2003, 278, 29649-29654.	3.4	65
138	Haploinsufficiency in DNA Polymerase β Increases Cancer Risk with Age and Alters Mortality Rate. Cancer Research, 2006, 66, 7460-7465.	0.9	65
139	DNA Polymerase Î ² Ribonucleotide Discrimination. Journal of Biological Chemistry, 2010, 285, 24457-24465.	3.4	64
140	Damage sensor role of UV-DDB during base excision repair. Nature Structural and Molecular Biology, 2019, 26, 695-703.	8.2	64
141	Mammalian Heterogeneous Ribonucleoprotein A1 and its Constituent Domains. Journal of Molecular Biology, 1993, 229, 873-889.	4.2	61
142	Increased PARP-1 Association with DNA in Alkylation Damaged, PARP-Inhibited Mouse Fibroblasts. Molecular Cancer Research, 2012, 10, 360-368.	3.4	61
143	"Action-at-a-Distance―Mutagenesis. Journal of Biological Chemistry, 1999, 274, 15920-15926.	3.4	60
144	DNA Polymerase β Substrate Specificity. Journal of Biological Chemistry, 2009, 284, 31680-31689.	3.4	60

#	Article	IF	CITATIONS
145	DNA Synthesis and dRPase Activities of Polymerase β Are Both Essential for Single-Nucleotide Patch Base Excision Repair in Mammalian Cell Extracts. Biochemistry, 2001, 40, 809-813.	2.5	58
146	Poly(ADP-ribose) Polymerase Activity Prevents Signaling Pathways for Cell Cycle Arrest after DNA Methylating Agent Exposure. Journal of Biological Chemistry, 2005, 280, 15773-15785.	3.4	57
147	Mismatch-Induced Conformational Distortions in Polymerase β Support an Induced-Fit Mechanism for Fidelityâ€. Biochemistry, 2005, 44, 13328-13341.	2.5	57
148	[77] Cultured cell systems and methods for neurobiology. Methods in Enzymology, 1974, 32, 765-788.	1.0	56
149	Localization of a polynucleotide binding region in the HIV-1 reverse transcriptase: implications for primer binding. Biochemistry, 1991, 30, 10623-10631.	2.5	56
150	DNA polymerase beta and DNA synthesis in Xenopus oocytes and in a nuclear extract. Science, 1992, 258, 475-478.	12.6	56
151	Different structural states in oligonucleosomes are required for early versus late steps of base excision repair. Nucleic Acids Research, 2007, 35, 4313-4321.	14.5	56
152	Transcriptional mutagenesis mediated by 8-oxoG induces translational errors in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4218-4222.	7.1	56
153	Kinetic analysis of template-primer interactions with recombinant forms of HIV-1 reverse transcriptase. Biochemistry, 1993, 32, 9745-9753.	2.5	55
154	Activities and Mechanism of DNA Polymerase β. Methods in Enzymology, 2006, 408, 91-107.	1.0	55
155	Purification and characterization of the RNase H domain of HIV-1 reverse transcriptase expressed in recombinantEscherichia coli. FEBS Letters, 1990, 270, 76-80.	2.8	54
156	Three-Dimensional Solution Structure of the N-Terminal Domain of DNA Polymerase β and Mapping of the ssDNA Interaction Interfaceâ€,‡. Biochemistry, 1996, 35, 6188-6200.	2.5	54
157	Minor Groove Interactions at the DNA Polymerase β Active Site Modulate Single-base Deletion Error Rates. Journal of Biological Chemistry, 2000, 275, 28033-28038.	3.4	54
158	Local Deformations Revealed by Dynamics Simulations of DNA Polymerase β with DNA Mismatches at the Primer Terminus. Journal of Molecular Biology, 2002, 321, 459-478.	4.2	54
159	DNA polymerase Î ² . International Journal of Biochemistry and Cell Biology, 2002, 34, 321-324.	2.8	54
160	(R)-β,γ-Fluoromethylene-dGTP-DNA Ternary Complex with DNA Polymerase β. Journal of the American Chemical Society, 2007, 129, 15412-15413.	13.7	54
161	Hypersensitivity phenotypes associated with genetic and synthetic inhibitor-induced base excision repair deficiency. DNA Repair, 2007, 6, 530-543.	2.8	54
162	Pol β associated complex and base excision repair factors in mouse fibroblasts. Nucleic Acids Research, 2012, 40, 11571-11582.	14.5	54

#	Article	IF	CITATIONS
163	Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. Nature Communications, 2017, 8, 253.	12.8	54
164	The ATF/CREB transcription factor-binding site in the polymerase beta promoter mediates the positive effect of N-methyl-N'-nitro-N-nitrosoguanidine on transcription Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3729-3733.	7.1	53
165	DNA polymerases on the move. Nature Structural Biology, 1998, 5, 95-99.	9.7	53
166	Subunits of human replication protein A are crosslinked by photoreactive primers synthesized by DNA polymerases. Nucleic Acids Research, 1998, 26, 602-607.	14.5	53
167	Dynamic Characterization of a DNA Repair Enzyme:Â NMR Studies of [methyl-13C]Methionine-Labeled DNA Polymerase β. Biochemistry, 2004, 43, 8911-8922.	2.5	53
168	A real-time fluorescence method for enzymatic characterization of specialized human DNA polymerases. Nucleic Acids Research, 2009, 37, e128-e128.	14.5	53
169	Oxidized nucleotide insertion by pol \hat{I}^2 confounds ligation during base excision repair. Nature Communications, 2017, 8, 14045.	12.8	53
170	Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. Journal of Clinical Investigation, 2004, 113, 1711-1721.	8.2	53
171	Regulation of in vitro nucleic acid strand annealing activity of heterogeneous nuclear ribonucleoprotein protein A1 by reversible phosphorylation. Biochemistry, 1994, 33, 11382-11390.	2.5	52
172	Base Substitution Specificity of DNA Polymerase β Depends on Interactions in the DNA Minor Groove. Journal of Biological Chemistry, 1999, 274, 20749-20752.	3.4	52
173	Mutagenic conformation of 8-oxo-7,8-dihydro-2′-dGTP in the confines of a DNA polymerase active site. Nature Structural and Molecular Biology, 2010, 17, 889-890.	8.2	52
174	Activation of the Human DNA Polymerase β Promoter by a DNA-alkylating Agent through Induced Phosphorylation of cAMP Response Element-binding Protein-1. Journal of Biological Chemistry, 1996, 271, 18508-18513.	3.4	51
175	Interplay between DNA polymerases β and λ in repair of oxidation DNA damage in chicken DT40 cells. DNA Repair, 2007, 6, 869-875.	2.8	50
176	Relation between deoxyribonucleic acid polymerase activity and intracisternal A-type particles in mouse myeloma. Biochemistry, 1974, 13, 1087-1094.	2.5	49
177	Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts. PLoS ONE, 2015, 10, e0118819.	2.5	49
178	Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5228-36.	7.1	49
179	DNA Polymerase and Mammalian Base Excision Repair. Cold Spring Harbor Symposia on Quantitative Biology, 2000, 65, 143-156.	1.1	49
180	Multiple Forms of DNA Polymerase in Mouse Myeloma. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71, 578-582.	7.1	48

#	Article	IF	CITATIONS
181	Role of the "Helix Clamp" in HIV-1 Reverse Transcriptase Catalytic Cycling as Revealed by Alanine-scanning Mutagenesis. Journal of Biological Chemistry, 1996, 271, 12213-12220.	3.4	48
182	Incorrect nucleotide insertion at the active site of a G:A mismatch catalyzed by DNA polymerase Â. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5670-5674.	7.1	48
183	Halogenated β,γ-Methylene- and Ethylidene-dGTP-DNA Ternary Complexes with DNA Polymerase β: Structural Evidence for Stereospecific Binding of the Fluoromethylene Analogues. Journal of the American Chemical Society, 2010, 132, 7617-7625.	13.7	48
184	Predicting Enhanced Cell Killing through PARP Inhibition. Molecular Cancer Research, 2013, 11, 13-18.	3.4	48
185	Micro-irradiation tools to visualize base excision repair and single-strand break repair. DNA Repair, 2015, 31, 52-63.	2.8	48
186	DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair, 2017, 60, 77-88.	2.8	48
187	Studies on the physiology of rat liver polyribosomes: quantition and intracellular distribution of ribosomes Proceedings of the National Academy of Sciences of the United States of America, 1965, 54, 600-607.	7.1	47
188	Progress toward molecular biology of DNA polymerase β. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1988, 949, 149-157.	2.4	47
189	Structure/function studies of HIV-1 reverse transcriptase: Dimerization-defective mutant L289K. Biochemistry, 1993, 32, 13012-13018.	2.5	47
190	Recombinogenic Phenotype of Human Activation-Induced Cytosine Deaminase. Journal of Immunology, 2004, 172, 4308-4313.	0.8	47
191	Highly Organized but Pliant Active Site of DNA Polymerase β: Compensatory Mechanisms in Mutant Enzymes Revealed by Dynamics Simulations and Energy Analyses. Biophysical Journal, 2004, 86, 3392-3408.	0.5	47
192	Alkylation DNA damage in combination with PARP inhibition results in formation of S-phase-dependent double-strand breaks. DNA Repair, 2010, 9, 929-936.	2.8	47
193	Uniquely Altered DNA Replication Fidelity Conferred by an Amino Acid Change in the Nucleotide Binding Pocket of Human Immunodeficiency Virus Type 1 Reverse Transcriptase. Journal of Biological Chemistry, 1999, 274, 32924-32930.	3.4	46
194	Mapping of the Interaction Interface of DNA Polymerase \hat{I}^2 with XRCC1. Structure, 2002, 10, 1709-1720.	3.3	46
195	A review of recent experiments on step-to-step "hand-off―of the DNA intermediates in mammalian base excision repair pathways. Molecular Biology, 2011, 45, 536-550.	1.3	46
196	Residues in the αH and αI Helices of the HIV-1 Reverse Transcriptase Thumb Subdomain Required for the Specificity of RNase H-catalyzed Removal of the Polypurine Tract Primer. Journal of Biological Chemistry, 1999, 274, 19885-19893.	3.4	45
197	DNA polymerase β-dependent long patch base excision repair in living cells. DNA Repair, 2010, 9, 109-119.	2.8	45
198	Molecular Insights into DNA Polymerase Deterrents for Ribonucleotide Insertion. Journal of Biological Chemistry, 2011, 286, 31650-31660.	3.4	45

#	Article	IF	CITATIONS
199	Lucanthone and Its Derivative Hycanthone Inhibit Apurinic Endonuclease-1 (APE1) by Direct Protein Binding. PLoS ONE, 2011, 6, e23679.	2.5	45
200	Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene)triphosphoric acid. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15693-15698.	7.1	44
201	Structures of dNTP Intermediate States during DNA Polymerase Active Site Assembly. Structure, 2012, 20, 1829-1837.	3.3	44
202	THE UTILIZATION OF GENES FOR RIBOSOMAL RNA, 5S RNA, AND TRANSFER RNA IN LIVER CELLS OF ADULT RATS. Proceedings of the National Academy of Sciences of the United States of America, 1969, 64, 981-988.	7.1	43
203	DNA Polymerase β in Abasic Site Repair: A Structurally Conserved Helixâ^'Hairpinâ^'Helix Motif in Lesion Detection by Base Excision Repair Enzymesâ€. Biochemistry, 1997, 36, 4713-4717.	2.5	43
204	α,β-Difluoromethylene Deoxynucleoside 5′-Triphosphates: A Convenient Synthesis of Useful Probes for DNA Polymerase β Structure and Function. Organic Letters, 2009, 11, 1883-1886.	4.6	43
205	DNA Sequence Context Effects on the Glycosylase Activity of Human 8-Oxoguanine DNA Glycosylase. Journal of Biological Chemistry, 2012, 287, 36702-36710.	3.4	43
206	Role of polymerase β in complementing aprataxin deficiency during abasic-site base excision repair. Nature Structural and Molecular Biology, 2014, 21, 497-499.	8.2	43
207	Repair pathway for PARP-1 DNA-protein crosslinks. DNA Repair, 2019, 73, 71-77.	2.8	43
208	Exploring the role of large conformational changes in the fidelity of DNA polymerase β. Proteins: Structure, Function and Bioinformatics, 2008, 70, 231-247.	2.6	42
209	Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair. PLoS ONE, 2015, 10, e0124269.	2.5	42
210	Structural Comparison of DNA Polymerase Architecture Suggests a Nucleotide Gateway to the Polymerase Active Site. Chemical Reviews, 2014, 114, 2759-2774.	47.7	41
211	Structural homology among calf thymus α-polymerase polypeptides. Nucleic Acids Research, 1982, 10, 935-946.	14.5	40
212	Identification of a higher molecular weight DNA polymerase alpha catalytic polypeptide in monkey cells by monoclonal antibody Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7777-7781.	7.1	40
213	A type IB topoisomerase with DNA repair activities. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6015-6020.	7.1	40
214	Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses. DNA Repair, 2013, 12, 774-785.	2.8	40
215	Amino Acid Substitution in the Active Site of DNA Polymerase Î ² Explains the Energy Barrier of the Nucleotidyl Transfer Reaction. Journal of the American Chemical Society, 2013, 135, 8078-8088.	13.7	40
216	HMGN1 Protein Regulates Poly(ADP-ribose) Polymerase-1 (PARP-1) Self-PARylation in Mouse Fibroblasts. Journal of Biological Chemistry, 2012, 287, 27648-27658.	3.4	39

#	Article	IF	CITATIONS
217	DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Nucleic Acids Research, 2013, 41, 1848-1858.	14.5	39
218	Polynucleotide recognition by DNA of $\hat{l}\pm$ -polymerase. Nucleic Acids Research, 1977, 4, 3981-3996.	14.5	38
219	Nucleotide-Induced DNA Polymerase Active Site Motions Accommodating a Mutagenic DNA Intermediate. Structure, 2005, 13, 1225-1233.	3.3	37
220	DNA polymerase Î ² and PARP activities in base excision repair in living cells. DNA Repair, 2009, 8, 1290-1299.	2.8	37
221	Mammalian .betapolymerase promoter: large-scale purification and properties of ATF/CREB palindrome binding protein from bovine testes. Biochemistry, 1991, 30, 6296-6305.	2.5	36
222	The human DNA polymerase \hat{l}^2 gene structure. Evidence of alternative splicing in gene expression. Nucleic Acids Research, 1994, 22, 2719-2725.	14.5	36
223	Base excision repair and design of small molecule inhibitors of human DNA polymerase β. Cellular and Molecular Life Sciences, 2010, 67, 3633-3647.	5.4	36
224	Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair. DNA Repair, 2015, 35, 85-89.	2.8	36
225	Vertical-scanning Mutagenesis of a Critical Tryptophan in the Minor Groove Binding Track of HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 1998, 273, 30435-30442.	3.4	35
226	Alternative Splicing as a Mechanism for Regulating 14-3-3 Binding: Interactions between hD53 (TPD52L1) and 14-3-3 Proteins. Journal of Molecular Biology, 2003, 332, 675-687.	4.2	35
227	High-level expression and purification of untagged and histidine-tagged HIV-1 reverse transcriptase. Protein Expression and Purification, 2004, 34, 75-86.	1.3	35
228	Interaction between PARP-1 and ATR in mouse fibroblasts is blocked by PARP inhibition. DNA Repair, 2008, 7, 1787-1798.	2.8	35
229	DNA Polymerases \hat{I}_{\pm} and \hat{I}^2 Are Required for DNA Repair in an Efficient Nuclear Extract from Xenopus Oocytes. Journal of Biological Chemistry, 1996, 271, 13816-13820.	3.4	34
230	Perspective: pre-chemistry conformational changes in DNA polymerase mechanisms. Theoretical Chemistry Accounts, 2012, 131, 1287.	1.4	34
231	Transfected human beta-polymerase promoter contains a ras-responsive element Molecular and Cellular Biology, 1990, 10, 3852-3856.	2.3	33
232	Assignments of 1H, 15N, and 13C Resonances for the Backbone and Side Chains of the N-Terminal Domain of DNA Polymerase .beta Determination of the Secondary Structure and Tertiary Contacts. Biochemistry, 1994, 33, 9537-9545.	2.5	33
233	Phorbol Ester Abrogates Up-regulation of DNA Polymerase β by DNA-alkylating Agents in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1995, 270, 16402-16408.	3.4	33
234	DNA Damage-Induced Transcriptional Activation of a Human DNA Polymerase .beta. Chimeric Promoter: Recruitment of Preinitiation Complex in Vitro by ATF/CREB. Biochemistry, 1995, 34, 73-80.	2.5	33

#	Article	IF	CITATIONS
235	Rapid Segmental and Subdomain Motions of DNA Polymerase β. Journal of Biological Chemistry, 2003, 278, 5072-5081.	3.4	33
236	DNA scanning by base excision repair enzymes and implications for pathway coordination. DNA Repair, 2018, 71, 101-107.	2.8	33
237	The Base Substitution Fidelity of DNA Polymerase β-dependent Single Nucleotide Base Excision Repair. Journal of Biological Chemistry, 2003, 278, 25947-25951.	3.4	32
238	FEN1 Functions in Long Patch Base Excision Repair Under Conditions of Oxidative Stress in Vertebrate Cells. Molecular Cancer Research, 2010, 8, 204-215.	3.4	32
239	Specific inhibition of DNA polymerase β by its 14 kDa domain: role of single- and double-stranded DNA binding and 5′-phosphate recognition. Nucleic Acids Research, 1995, 23, 1597-1603.	14.5	31
240	dNTP Binding to HIV-1 Reverse Transcriptase and Mammalian DNA Polymerase β as Revealed by Affinity Labeling with a Photoreactive dNTP Analog. Journal of Biological Chemistry, 1996, 271, 21891-21897.	3.4	31
241	Vertical-scanning Mutagenesis of a Critical Tryptophan in the "Minor Groove Binding Track―of HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2000, 275, 15025-15033.	3.4	31
242	The Domain Organization and Properties of Individual Domains of DNA Topoisomerase V, a Type 1B Topoisomerase with DNA Repair Activities. Journal of Biological Chemistry, 2002, 277, 4959-4965.	3.4	31
243	Base excision repair in nucleosomes lacking histone tails. DNA Repair, 2005, 4, 203-209.	2.8	31
244	β,γ-CHF- and β,γ-CHCl-dGTP Diastereomers: Synthesis, Discrete ³¹ PÂNMR Signatures, and Absolut Configurations of New Stereochemical Probes for DNA Polymerases. Journal of the American Chemical Society, 2012, 134, 8734-8737.	e 13.7	31
245	HIV-1 reverse transcriptase: Inhibition by 2',5'-oligoadenylates. Biochemistry, 1993, 32, 12112-12118.	2.5	30
246	Down-regulation of DNA polymerase \hat{I}^2 accompanies somatic hypermutation in human BL2 cell lines. DNA Repair, 2007, 6, 244-253.	2.8	30
247	Metal-induced DNA translocation leads to DNA polymerase conformational activation. Nucleic Acids Research, 2012, 40, 2974-2983.	14.5	30
248	Strategic Combination of DNA-Damaging Agent and PARP Inhibitor Results in Enhanced Cytotoxicity. Frontiers in Oncology, 2013, 3, 257.	2.8	30
249	Nuclear Localization of the DNA Repair Scaffold XRCC1: Uncovering the Functional Role of a Bipartite NLS. Scientific Reports, 2015, 5, 13405.	3.3	30
250	Complementation of aprataxin deficiency by base excision repair enzymes. Nucleic Acids Research, 2015, 43, 2271-2281.	14.5	30
251	Structures of DNA Polymerase Mispaired DNA Termini Transitioning to Pre-catalytic Complexes Support an Induced-Fit Fidelity Mechanism. Structure, 2016, 24, 1863-1875.	3.3	30
252	Chromosomal location of the human gene for DNA polymerase beta Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 503-507.	7.1	29

#	Article	IF	CITATIONS
253	Active-site modification of mammalian DNA polymerase .beta. with pyridoxal 5'-phosphate: mechanism of inhibition and identification of lysine 71 in the deoxynucleoside triphosphate binding pocket. Biochemistry, 1989, 28, 6305-6309.	2.5	29
254	Protein binding elements in the human \hat{l}^2 -polymerase promoter. Nucleic Acids Research, 1990, 18, 919-928.	14.5	29
255	Human Immunodeficiency Virus Type 1 Reverse Transcriptase. Journal of Biological Chemistry, 1995, 270, 9740-9747.	3.4	29
256	A Thymine Isostere in the Templating Position Disrupts Assembly of the Closed DNA Polymerase \hat{l}^2 Ternary Complex. Biochemistry, 2005, 44, 15230-15237.	2.5	29
257	Involvement of poly(ADP-ribose) polymerase activity in regulating Chk1-dependent apoptotic cell death. DNA Repair, 2005, 4, 1111-1120.	2.8	29
258	Transition State in DNA Polymerase β Catalysis: Rate-Limiting Chemistry Altered by Base-Pair Configuration. Biochemistry, 2014, 53, 1842-1848.	2.5	29
259	Potential for two isoforms of the A1 ribonucleoprotein in Xenopus laevis Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1367-1371.	7.1	28
260	Characterization of the Tryptophan Fluorescence and Hydrodynamic Properties of Rat DNA Polymerase β. Journal of Molecular Biology, 1994, 244, 224-235.	4.2	28
261	Mammalian DNA polymerase .beta.: Characterization of a 16-kDa transdomain fragment containing the nucleic acid-binding activities of the native enzyme. Biochemistry, 1992, 31, 10272-10280.	2.5	27
262	Replication of O6-Methylguanine-containing DNA by Repair and Replicative DNA Polymerases. Journal of Biological Chemistry, 1996, 271, 20088-20095.	3.4	27
263	Probing Structure/Function Relationships of HIV-1 Reverse Transcriptase with Styrene Oxide N2-Guanine Adducts. Journal of Biological Chemistry, 1997, 272, 8525-8530.	3.4	27
264	Shaping science policy in the age of genomics. Nature Reviews Genetics, 2004, 5, 311-315.	16.3	27
265	Revealing the role of the product metal in DNA polymerase Î ² catalysis. Nucleic Acids Research, 2017, 45, gkw1363.	14.5	27
266	RNA abasic sites in yeast and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20689-20695.	7.1	27
267	Genetic relatedness of human DNA polymerase β and terminal deoxynucleotidyltransferase. Gene, 1987, 60, 163-173.	2.2	26
268	Levels and size complexity of DNA polymerase β mRNA in rat regenerating liver and other organs. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1008, 203-207.	2.4	26
269	Hyperactivation of PARP Triggers Nonhomologous End-Joining in Repair-Deficient Mouse Fibroblasts. PLoS ONE, 2012, 7, e49301.	2.5	26
270	Stereospecific Formation of a Ternary Complex of (<i>S</i>)â€Î±,βâ€Fluoromethyleneâ€dATP with DNA Pol β. ChemBioChem, 2012, 13, 528-530.	2.6	26

#	Article	IF	CITATIONS
271	Oxidative DNA-protein crosslinks formed in mammalian cells by abasic site lyases involved in DNA repair, 2020, 87, 102773.	2.8	26
272	Modulation of base excision repair by low density lipoprotein, oxidized low density lipoprotein and antioxidants in mouse monocytes. Carcinogenesis, 2000, 21, 1017-1022.	2.8	25
273	DNA Lesion Bypass Polymerases Open Up. Structure, 2001, 9, 759-764.	3.3	25
274	Regulated over-expression of DNA polymerase β mediates early onset cataract in mice. DNA Repair, 2003, 2, 609-622.	2.8	25
275	Base Excision Repair of Tandem Modifications in a Methylated CpG Dinucleotide. Journal of Biological Chemistry, 2014, 289, 13996-14008.	3.4	25
276	Substrate-induced DNA Polymerase Î ² Activation. Journal of Biological Chemistry, 2014, 289, 31411-31422.	3.4	25
277	Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members. DNA Repair, 2014, 22, 77-88.	2.8	25
278	Investigation of methods for measurement of radioactivity in tritiated DNA and applications to assays for DNA polymerase activity. Analytical Biochemistry, 1973, 56, 196-207.	2.4	24
279	Structure of DNA polymerase beta with a benzo[c]phenanthrene diol epoxide-adducted template exhibits mutagenic features. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17231-17236.	7.1	24
280	Single-nucleotide base excision repair DNA polymerase activity in C. elegans in the absence of DNA polymerase Â. Nucleic Acids Research, 2012, 40, 670-681.	14.5	24
281	Modulating the DNA polymerase \hat{l}^2 reaction equilibrium to dissect the reverse reaction. Nature Chemical Biology, 2017, 13, 1074-1080.	8.0	24
282	Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts. Nucleic Acids Research, 2017, 45, 10079-10088.	14.5	24
283	Mammalianβ-polymerase promoter: phosphorylation of ATF/CRE-binding protein and regulation of DNA binding. Nucleic Acids Research, 1991, 19, 3369-3375.	14.5	23
284	DNA damage response of cloned DNA β-polymerase promoter is blocked in mutant cell lines deficient in protein kinase A. Nucleic Acids Research, 1992, 20, 5527-5531.	14.5	23
285	Identification of Novel mRNA Isoforms for Human DNA Polymerase β. DNA and Cell Biology, 1996, 15, 653-659.	1.9	23
286	REV1 mediated mutagenesis in base excision repair deficient mouse fibroblast. DNA Repair, 2005, 4, 1182-1188.	2.8	23
287	ATR signaling mediates an S-phase checkpoint after inhibition of poly(ADP-ribose) polymerase activity. DNA Repair, 2007, 6, 742-750.	2.8	23
288	Differing Conformational Pathways Before and After Chemistry for Insertion of dATP versus dCTP Opposite 8-OxoG in DNA Polymerase Î ² . Biophysical Journal, 2007, 92, 3063-3070.	0.5	23

#	Article	IF	CITATIONS
289	Comparative assessment of plasmid and oligonucleotide DNA substrates in measurement of in vitro base excision repair activity. Nucleic Acids Research, 2007, 35, e112-e112.	14.5	22
290	PARP inhibition during alkylation-induced genotoxic stress signals a cell cycle checkpoint response mediated by ATM. DNA Repair, 2009, 8, 1264-1272.	2.8	22
291	DNA polymerase beta and other gap-filling enzymes in mammalian base excision repair. The Enzymes, 2019, 45, 1-26.	1.7	22
292	Identification of the mouse low-salt-eluting single-stranded DNA-binding protein as a mammalian lactate dehydrogenase-A isoenzyme. Biochemical Journal, 1986, 233, 913-916.	3.7	21
293	Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine. Journal of Biological Chemistry, 2016, 291, 24314-24323.	3.4	21
294	DNA polymerase β uses its lyase domain in a processive search for DNA damage. Nucleic Acids Research, 2017, 45, gkx047.	14.5	21
295	Mapping of the gene for DNA polymerase β to mouse Chromosome 8. Cytogenetic and Genome Research, 1990, 53, 108-111.	1.1	20
296	Physical studies of tyrosine and tryptophan residues in mammalian A1 heterogeneous nuclear ribonucleoprotein Support for a segmented structure. Journal of Molecular Biology, 1991, 221, 693-709.	4.2	20
297	DNA polymerase Î ² -dependent cell survival independent of XRCC1 expression. DNA Repair, 2015, 26, 23-29.	2.8	20
298	Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO ₃) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts. Environmental Health Perspectives, 2016, 124, 1241-1252.	6.0	20
299	Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability. Nucleic Acids Research, 2016, 44, 5190-5203.	14.5	20
300	Unencumbered Pol \hat{I}^2 lyase activity in nucleosome core particles. Nucleic Acids Research, 2017, 45, 8901-8915.	14.5	20
301	Pol μ dGTP mismatch insertion opposite T coupled with ligation reveals promutagenic DNA repair intermediate. Nature Communications, 2018, 9, 4213.	12.8	20
302	Heterogeneity in the Radiation Survival Curves and Biochemical Properties of Human Lung Cancer Cell Lines. Journal of the National Cancer Institute, 1984, , .	6.3	19
303	Insights into the mechanism of the \hat{l}^2 -elimination catalyzed by the N-terminal domain of DNA polymerase \hat{l}^2 . Tetrahedron, 1997, 53, 12057-12066.	1.9	19
304	Gastrointestinal Hyperplasia with Altered Expression of DNA Polymerase Î ² . PLoS ONE, 2009, 4, e6493.	2.5	19
305	Steady-state, Pre-steady-state, and Single-turnover Kinetic Measurement for DNA Glycosylase Activity. Journal of Visualized Experiments, 2013, , e50695.	0.3	19
306	Role of the oxidized form of XRCC1 in protection against extreme oxidative stress. Free Radical Biology and Medicine, 2017, 107, 292-300.	2.9	18

#	Article	IF	CITATIONS
307	Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State. Biochemistry, 2018, 57, 3925-3933.	2.5	18
308	Mitochondrial dysfunction and DNA damage accompany enhanced levels of formaldehyde in cultured primary human fibroblasts. Scientific Reports, 2020, 10, 5575.	3.3	18
309	Oxidative DNA Damage Modulates DNA Methylation Pattern in Human Breast Cancer 1 (BRCA1) Gene via the Crosstalk between DNA Polymerase β and a de novo DNA Methyltransferase. Cells, 2020, 9, 225.	4.1	18
310	Mapping of nucleic acid binding in proteolytic domains of HIV-1 reverse transcriptase. Biochemistry, 1993, 32, 7466-7474.	2.5	17
311	The bovine DNA polymerase \hat{l}^2 promoter: cloning, characterization and comparison with the human core promoter. Gene, 1995, 164, 323-327.	2.2	17
312	Push and pull of base flipping. Nature, 1996, 384, 25-26.	27.8	17
313	Binary system for selective photoaffinity labeling of base excision repair DNA polymerases. Nucleic Acids Research, 2002, 30, 73e-73.	14.5	17
314	Mutagenesis Is Elevated in Male Germ Cells Obtained from DNA Polymerase-beta Heterozygous Mice1. Biology of Reproduction, 2008, 79, 824-831.	2.7	17
315	Effect of β,γ-CHF- and β,γ-CHCl-dGTP Halogen Atom Stereochemistry on the Transition State of DNA Polymerase β. Biochemistry, 2012, 51, 8491-8501.	2.5	17
316	Designing a spatially aware and autonomous quadcopter. , 2013, , .		17
317	Differential sensitivity of low molecular weight DNA polymerase to sulfhydryl-blocking reagents. Nucleic Acids and Protein Synthesis, 1975, 383, 338-343.	1.7	16
318	Purification and Characterization of a DNA Polymerase β Promoter Initiator Element-Binding Transcription Factor from Bovine Testisâ€. Biochemistry, 1996, 35, 1775-1782.	2.5	16
319	Interactions between DNA Polymerase β and the Major Covalent Adduct of the Carcinogen (+)-anti-Benzo[a]pyrene Diol Epoxide with DNA at a Primerâ^'Template Junctionâ€. Biochemistry, 1998, 37, 878-884.	2.5	16
320	The HIV-1 transactivator protein Tat is a potent inducer of the human DNA repair enzyme β-polymerase. Aids, 2001, 15, 433-440.	2.2	16
321	DNA Polymerase β Gap-Filling Translesion DNA Synthesis. Chemical Research in Toxicology, 2012, 25, 2744-2754.	3.3	16
322	Topoisomerase I-driven repair of UV-induced damage in NER-deficient cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14412-14420.	7.1	16
323	The Environmental Genome Project: phase I and beyond. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 147-56.	3.4	16
324	Oncornavirus Expression in Human x Mouse Hybrid Cells Segregating Mouse Chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71, 1695-1700.	7.1	15

#	Article	IF	CITATIONS
325	Antibodies from patients and mice with autoimmune diseases react with recombinant hnRNP core protein A1. Journal of Autoimmunity, 1988, 1, 73-83.	6.5	15
326	dNTP Binding Site in Rat DNA Polymerase β Revealed by Controlled Proteolysis and Azido Photoprobe Cross-Linking. Biochemistry, 1996, 35, 3728-3734.	2.5	15
327	α,β-Methylene-2′-deoxynucleoside 5′-Triphosphates as Noncleavable Substrates for DNA Polymerases: Isolation, Characterization, and Stability Studies of Novel 2′-Deoxycyclonucleosides, 3,5′-Cyclo-dG, and 2,5′-Cyclo-dT. Journal of Medicinal Chemistry, 2008, 51, 6460-6470.	6.4	15
328	New structural snapshots provide molecular insights into the mechanism of high fidelity DNA synthesis. DNA Repair, 2015, 32, 3-9.	2.8	15
329	Structural studies on avian myeloblastosis virus: Conditions for isolation and biochemical characteristics of the core component. Biochimica Et Biophysica Acta - General Subjects, 1973, 304, 1-11.	2.4	14
330	Chapter 6 On the Measurement of Tritium in DNA and Its Applications to the Assay of DNA Polymerase Activity. Methods in Cell Biology, 1976, 13, 105-120.	1.1	14
331	Site-specific modification of E. coli DNA polymerase I large fragment with pyridoxal 5'-phosphate. Biochemistry, 1984, 23, 2073-2078.	2.5	14
332	Studies on Primer Binding of HIV-1 Reverse Transcriptase Using a Fluorescent Probe. Journal of Molecular Biology, 1994, 236, 469-479.	4.2	14
333	Molecular Cloning and High-Level Expression of Human Polymerase β cDNA and Comparison of the Purified Recombinant Human and Rat Enzymes. Protein Expression and Purification, 2000, 18, 100-110.	1.3	14
334	DNA damage response protein ASCIZ links base excision repair with immunoglobulin gene conversion. Biochemical and Biophysical Research Communications, 2008, 371, 225-229.	2.1	14
335	Properties and applications of new monoclonal antibodies raised against calf DNA polymerase α. Analytical Biochemistry, 1985, 147, 10-21.	2.4	13
336	The Cloned Promoter of the Human DNA β-Polymerase Gene Contains a cAMP Response Element Functional in HeLa Cells. DNA and Cell Biology, 1992, 11, 61-69.	1.9	13
337	HIV-1 reverse transcriptase is phosphorylated in vitro and in a cellular system. International Journal of Biochemistry and Cell Biology, 1999, 31, 1443-1452.	2.8	13
338	DNA Polymerase β Gene Expression: The Promoter Activator CREB-1 Is Upregulated in Chinese Hamster Ovary Cells by DNA Alkylating Agent-Induced Stress. Biological Chemistry, 2003, 384, 19-23.	2.5	13
339	Determination of Lysine pK Values Using [5-13C]Lysine:  Application to the Lyase Domain of DNA Pol β. Journal of the American Chemical Society, 2006, 128, 8104-8105.	13.7	13
340	Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity. Nucleic Acids Research, 2016, 44, 10824-10833.	14.5	13
341	Role of DNA polymerase β oxidized nucleotide insertion in DNA ligation failure. Journal of Radiation Research, 2017, 58, 603-607.	1.6	13
342	DNA polymerase β contains a functional nuclear localization signal at its N-terminus. Nucleic Acids Research, 2017, 45, 1958-1970.	14.5	13

#	Article	IF	CITATIONS
343	XRCC1 phosphorylation affects aprataxin recruitment and DNA deadenylation activity. DNA Repair, 2018, 64, 26-33.	2.8	13
344	Interaction between DNA Polymerase \hat{I}^2 and BRCA1. PLoS ONE, 2013, 8, e66801.	2.5	13
345	Disruption of transcription in vitro and gene expression in vivo by DNA adducts derived from a benzo[a]pyrene diol epoxide located in heterologous sequences. Carcinogenesis, 1997, 18, 239-244.	2.8	12
346	Kinetic analysis of Sp1-mediated transcriptional activation of the human DNA polymerase β promoter. Oncogene, 2000, 19, 4729-4735.	5.9	12
347	Substrate Rescue of DNA Polymerase β Containing a Catastrophic L22P Mutation. Biochemistry, 2014, 53, 2413-2422.	2.5	12
348	XRCC1-mediated repair of strand breaks independent of PNKP binding. DNA Repair, 2017, 60, 52-63.	2.8	12
349	Histone H3 Lysine 56 Acetylation Enhances AP Endonuclease 1-Mediated Repair of AP Sites in Nucleosome Core Particles. Biochemistry, 2019, 58, 3646-3655.	2.5	12
350	Pregnancy in sickle cell trait: what we do and don't know. British Journal of Haematology, 2020, 190, 328-335.	2.5	12
351	Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair, 2020, 90, 102850.	2.8	12
352	Template specific inhibitor of mammalian DNA polymerases Nucleic Acids Research, 1976, 3, 825-834.	14.5	11
353	DNA polymerase and simian virus 40 infection of resting monkey cells: induction of aphidicolin resistant α-polymerase. Nucleic Acids Research, 1983, 11, 8253-8268.	14.5	11
354	Synthesis of DNA polymerase by in vitro translation of calf RNA. Biochemical and Biophysical Research Communications, 1984, 122, 420-427.	2.1	11
355	Deregulation of DNA polymerase ? by sense and antisense RNA expression in mouse 3T3 cells alters cell growth. Somatic Cell and Molecular Genetics, 1990, 16, 311-320.	0.7	11
356	Optimal and Variant Metal-Ion Routes in DNA Polymerase β's Conformational Pathways. Journal of the American Chemical Society, 2014, 136, 3630-3639.	13.7	11
357	Mapping Functional Substrate–Enzyme Interactions in the pol β Active Site through Chemical Biology: Structural Responses to Acidity Modification of Incoming dNTPs. Biochemistry, 2018, 57, 3934-3944.	2.5	11
358	Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide. Nature Communications, 2021, 12, 2059.	12.8	11
359	Perspectives on formaldehyde dysregulation: Mitochondrial DNA damage and repair in mammalian cells. DNA Repair, 2021, 105, 103134.	2.8	11
360	Selective photochemical modification by trichloroethanol of tryptophan residues in proteins with a high tyrosine-to-tryptophan ratio. Analytical Biochemistry, 1992, 205, 27-35.	2.4	10

#	Article	IF	CITATIONS
361	DNA polymerases lose their grip. , 2001, 8, 915-917.		10
362	Two Scaffolds from Two Flips: (α,β)/(β,γ) CH ₂ /NH "Met-Im―Analogues of dTTP. Organic Letter 2015, 17, 2586-2589.	^S 4.6	10
363	Hiding in Plain Sight: The Bimetallic Magnesium Covalent Bond in Enzyme Active Sites. Inorganic Chemistry, 2017, 56, 313-320.	4.0	10
364	Processive searching ability varies among members of the gap-filling DNA polymerase X family. Journal of Biological Chemistry, 2017, 292, 17473-17481.	3.4	10
365	A Transition-State Perspective on Y-Family DNA Polymerase η Fidelity in Comparison with X-Family DNA Polymerases λ and β. Biochemistry, 2019, 58, 1764-1773.	2.5	10
366	Molecular basis for the faithful replication of 5-methylcytosine and its oxidized forms by DNA polymerase β. Journal of Biological Chemistry, 2019, 294, 7194-7201.	3.4	10
367	Structural basis for proficient oxidized ribonucleotide insertion in double strand break repair. Nature Communications, 2021, 12, 5055.	12.8	10
368	Measurement of the rate and velocity of movement by single heart cells in culture. American Journal of Cardiology, 1973, 32, 162-166.	1.6	9
369	Measurement of DNA polymerase β in skin fibroblast cell lines from patients with ataxia telangiectasia. Mutation Research - DNA Repair Reports, 1985, 146, 295-300.	1.8	9
370	A Molecular Dynamics Model of HIV-1 Reverse Transcriptase Complexed with DNA: Comparison with Experimental Structures. Journal of Molecular Modeling, 2000, 6, 575-586.	1.8	9
371	Shining light on the response to repair intermediates in DNA of living cells. DNA Repair, 2020, 85, 102749.	2.8	9
372	Lysines in the lyase active site of DNA polymerase \hat{I}^2 destabilize nonspecific DNA binding, facilitating searching and DNA gap recognition. Journal of Biological Chemistry, 2020, 295, 12181-12187.	3.4	9
373	Patterns of albumin and general protein synthesis in rat liver as revealed by gel electrophoresis. Nucleic Acids and Protein Synthesis, 1972, 269, 477-484.	1.7	8
374	Expression of Polypeptides of Human Immunodeficiency Virus-1 Reverse Transcriptase in Escherichia coli. Protein Expression and Purification, 1993, 4, 187-199.	1.3	8
375	Negligible impact of pol Î ¹ expression on the alkylation sensitivity of pol Î ² -deficient mouse fibroblast cells. DNA Repair, 2008, 7, 830-833.	2.8	8
376	Mutagenesis dependent upon the combination of activation-induced deaminase expression and a double-strand break. Molecular Immunology, 2010, 48, 164-170.	2.2	8
377	Requirement for NBS1 in the S phase checkpoint response to DNA methylation combined with PARP inhibition. DNA Repair, 2011, 10, 225-234.	2.8	8
378	Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies. Nucleic Acids Research, 2013, 41, 657-666.	14.5	8

#	Article	IF	CITATIONS
379	Watching a DNA polymerase in action. Cell Cycle, 2014, 13, 691-692.	2.6	8
380	Insertion of oxidized nucleotide triggers rapid DNA polymerase opening. Nucleic Acids Research, 2016, 44, 4409-4424.	14.5	8
381	A guardian residue hinders insertion of a Fapy•dGTP analog by modulating the open-closed DNA polymerase transition. Nucleic Acids Research, 2019, 47, 3197-3207.	14.5	8
382	The Need for Exposure Health Sciences. Environmental Health Perspectives, 2005, 113, A650-A650.	6.0	8
383	Enzymatic Activity Assays in Yeast Cell Extracts. Bio-protocol, 2014, 4, .	0.4	8
384	Identification of a nuclear protein binding element within the rat brain protein kinase C Î ³ promoter that is related to the developmental control of this gene. FEBS Letters, 1993, 325, 210-214.	2.8	7
385	Human DNA polymerase-β promoter: Phorbol ester activation is mediated through the cAMP response element and cAMP-response-element-binding protein. Journal of Biomedical Science, 1997, 4, 279-288.	7.0	7
386	Cloning and characterization of a novel member of the human ATF/CREB family: ATF2 deletion, a potential regulator of the human DNA polymerase β promoter. Gene, 2003, 312, 117-124.	2.2	7
387	The Need for Exposure Health Sciences. Environmental Health Perspectives, 2005, 113, A650.	6.0	7
388	Distinction between mouse DNA polymerases $\hat{I}\pm$ and \hat{I}^2 by tryptic peptide mapping. Nucleic Acids Research, 1980, 8, 2771-2782.	14.5	6
389	Properties of a novel oligonucleotide-releasing bidirectional DNA exonuclease from mouse myeloma. Biochemistry, 1984, 23, 908-914.	2.5	6
390	Native species of helix destabilizing protein-1 in mouse myeloma identified by antibody probing of Western blots. Biochemical and Biophysical Research Communications, 1985, 131, 362-369.	2.1	6
391	Site-directed mutagenesis of HIV reverse transcriptase to probe enzyme processivity and drug binding. Current Opinion in Biotechnology, 1994, 5, 414-421.	6.6	6
392	Kinetic Analysis of Sp1-Mediated Transcriptional Activation of a TATA-Containing Promoter. Biochemistry, 2000, 39, 818-823.	2.5	6
393	Insights into the Conformation of Aminofluorene-Deoxyguanine Adduct in a DNA Polymerase Active Site. Journal of Biological Chemistry, 2013, 288, 23573-23585.	3.4	6
394	Disease-First: A New Paradigm for Environmental Health Science Research. Environmental Health Perspectives, 2006, 114, A398-A398.	6.0	6
395	New assay technique for reactions that produce radioactive gases. Analytical Biochemistry, 1971, 43, 460-467.	2.4	5
396	Stimulation of DNA polymerase activity by the combination of p-hydroxymercuribenzoate and dithiothreitol. Biochemical and Biophysical Research Communications, 1974, 59, 243-251.	2.1	5

#	Article	IF	CITATIONS
397	A vinyl polymer with purine residues deficient in base pairing inhibits murine leukemia virus replication. Biochemical and Biophysical Research Communications, 1978, 81, 217-223.	2.1	5
398	Anomalous electrophoretic migration of oligodeoxynucleotides with terminal î—,OH groups: Applications for DNA exonuclease characterization. Analytical Biochemistry, 1983, 129, 200-206.	2.4	5
399	Mammalian .alphapolymerase: cloning of partial complementary DNA and immunobinding of catalytic subunit in crude homogenate protein blots. Biochemistry, 1987, 26, 956-963.	2.5	5
400	Requirement of mammalian DNA polymerase- \hat{l}^2 in base-excision repair. Nature, 1996, 379, 848-848.	27.8	5
401	Relationship between base excision repair capacity and DNA alkylating agent sensitivity in mouse monocytes. Mutation Research DNA Repair, 2001, 487, 121-126.	3.7	5
402	Characterization of DNA polymerase β splicing variants in gastric cancer: The most frequent exon 2-deleted isoform is a non-coding RNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 670, 79-87.	1.0	5
403	Applications of Quantum Mechanical/Molecular Mechanical Methods to the Chemical Insertion Step of DNA and RNA Polymerization. Advances in Protein Chemistry and Structural Biology, 2014, 97, 83-113.	2.3	5
404	Structures of human DNA polymerases \hat{l} and $\hat{l}_{,}$ expose their end game. Nature Structural and Molecular Biology, 2015, 22, 273-275.	8.2	5
405	Evidence for Abasic Site Sugar Phosphate-Mediated Cytotoxicity in Alkylating Agent Treated Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e47945.	2.5	5
406	The dark side of DNA repair. ELife, 2014, 3, e03068.	6.0	5
407	Polydeoxythymidylate inhibition of rabbit reticulocyte RNA dependent protein synthesis in a Krebs II ascites cell system. Biochemical and Biophysical Research Communications, 1972, 48, 1280-1286.	2.1	4
408	Structural studies of avian myeloblastosis virus. Nucleic Acids and Protein Synthesis, 1974, 361, 53-58.	1.7	4
409	Expression and Purification of the HIV-1 Reverse Transcriptase Using the Baculovirus Expression Vector System. Protein Expression and Purification, 1993, 4, 298-303.	1.3	4
410	1H, 13C and 15N resonance assignments for the perdeuterated 22 kD palm-thumb domain of DNA polymerase beta. Journal of Biomolecular NMR, 2002, 22, 197-198.	2.8	4
411	Disease-First: A New Paradigm for Environmental Health Science Research. Environmental Health Perspectives, 2006, 114, A398.	6.0	4
412	Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair― DNA Repair, 2015, 36, 86-90.	2.8	4
413	Cutting-edge Perspectives in Genomic Maintenance III: Preface. DNA Repair, 2016, 44, 1-3.	2.8	4
414	Using Human Primary Foreskin Fibroblasts to Study Cellular Damage and Mitochondrial Dysfunction. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2020, 86, e99.	1.1	4

#	Article	IF	CITATIONS
415	Watching right and wrong nucleotide insertion captures hidden polymerase fidelity checkpoints. Nature Communications, 2022, 13, .	12.8	4
416	Studies on DNA synthesis in murine myeloma: II. Activation of latent RNA-dependent DNA polymerase activity in membrane fractions. Biochemical and Biophysical Research Communications, 1972, 49, 1093-1099.	2.1	3
417	Inhibition of cell-free globin synthesis by polydeoxythymidylate. Nucleic Acids and Protein Synthesis, 1973, 294, 507-516.	1.7	3
418	Cancer, the environment, and environmental justice. Cancer, 1998, 83, 1784-1792.	4.1	3
419	Reflections on the Superfund Research Program: A tribute to its Founding Director, William A. Suk. DNA Repair, 2014, 22, v-viii.	2.8	3
420	Transitions in DNA polymerase β μs-ms dynamics related to substrate binding and catalysis. Nucleic Acids Research, 2018, 46, 7309-7322.	14.5	3
421	DNA polymerase β nucleotide-stabilized template misalignment fidelity depends on local sequence context. Journal of Biological Chemistry, 2020, 295, 529-538.	3.4	3
422	Base-Excision Repair: Role of DNA Polymerase \hat{I}^2 in Late-Stage Base Excision Repair. , 2011, , 297-319.		3
423	Framework For Environmental Exposure Research: The Disease-First Approach. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 262-267.	3.4	3
424	Bisphenol A and Nongenotoxic Drivers of Cancer. , 0, , 415-438.		3
425	Abasic Oligodeoxyribonucleoside Phosphorothioates as Inhibitors of the Human Immunodeficiency Virus-1 (HIV-1) Phosphorothioate Inhibition of HIV-1 Reverse Transcriptase and Interactions with Syrian Hampster Fibroblast (V79) Cells. Nucleosides & Nucleotides, 1991, 10, 457-460.	0.5	2
426	Inhibitors of HIV-1 Reverse Transcriptase and Fidelity of <i>In Vitro</i> DNA Replication. Journal of Enzyme Inhibition and Medicinal Chemistry, 1992, 6, 35-46.	0.5	2
427	The 2nd US–Japan DNA Repair Meeting, Honolulu, Hawaii, June 4–8, 2004. DNA Repair, 2004, 3, 1661-1674.	2.8	2
428	Understanding the loss-of-function in a triple missense mutant of DNA polymerase β found in prostate cancer. International Journal of Oncology, 2013, 43, 1131-1140.	3.3	2
429	Central Steps in Mammalian BER and Regulation by PARP1. , 2017, , 253-280.		2
430	The Pol β variant containing exon α is deficient in DNA polymerase but has full dRP lyase activity. Scientific Reports, 2019, 9, 9928.	3.3	2
431	Structure of a DNA polymerase abortive complex with the 8OG:dA base pair at the primer terminus. Communications Biology, 2020, 3, 348.	4.4	2
432	In vitro Assay to Measure DNA Polymerase \hat{I}^2 Nucleotide Insertion Coupled with the DNA Ligation Reaction during Base Excision Repair. Bio-protocol, 2017, 7, .	0.4	2

#	Article	IF	CITATIONS
433	Mammalian DNA Repair and the Cellular DNA Polymerases. , 1998, , 161-180.		2
434	Enzymatic Activity Assays in Yeast Cell Extracts. Bio-protocol, 2014, 4, .	0.4	2
435	Monitoring DNA polymerase \hat{I}^2 mitochondrial localization and dynamics. DNA Repair, 2022, 116, 103357.	2.8	2
436	Syn-Full Behavior by T7 DNA Polymerase. Structure, 2005, 13, 1580-1582.	3.3	1
437	Preface. DNA Repair, 2014, 19, 1-2.	2.8	1
438	Editorial. DNA Repair, 2015, 35, v.	2.8	1
439	Preface. DNA Repair, 2015, 32, 1-2.	2.8	1
440	Characterization of a 32-Residue Peptide From Rat DNA Polymerase Î ² With Single-Stranded DNA-Binding Affinity. Techniques in Protein Chemistry, 1994, 5, 359-369.	0.3	1
441	DNA Repair Models for Understanding Triplet Repeat Instability. , 2006, , 667-678.		1
442	Regulation of expression of type C virion DNA polymerase (reverse transcriptase) in human � mouse and human � rat hybrid cells. Somatic Cell Genetics, 1979, 5, 991-1011.	2.7	0
443	Biophysical studies on the mammalian heterogeneous nuclear ribonucleoprotein, A1, and its component domains. , 1990, 1204, 540.		0
444	<title>Fluorescence quenching in proteins: some applications to protein-DNA and protein-lipid
interactions</title> . , 1992, , .		0
445	Volume 205, Number 1 (1992), in the article "Selective Photochemical Modification by Trichloroethanol of Tryptophan Residues in Proteins with a High Tyrosine-to-Tryptophan Ratio," by José R. Casas-Finet, Samuel H. Wilson, and Richard L. Karpel pages 27-35. Analytical Biochemistry, 1993, 211, 177.	2.4	0
446	Human DNA Polymerase-ß Promoter: Phorbol Ester Activation Is Mediated through the cAMP Response Element and cAMP-Response-Element-Binding Protein. Journal of Biomedical Science, 1997, 4, 279-288.	7.0	0
447	Strategic Planning: Establishing Need and Clarifying Motivation. Environmental Health Perspectives, 2005, 113, A506.	6.0	0
448	Editorial. DNA Repair, 2016, 37, A1.	2.8	0
449	Cutting-edge perspectives in genomic maintenance IV. DNA Repair, 2017, 56, 1-3.	2.8	0
450	Cutting-edge perspectives in genomic maintenance V. DNA Repair, 2018, 71, 1-2.	2.8	0

#	Article	IF	CITATIONS
451	Revealing an Internal Stabilization Deficiency in the DNA Polymerase β K289M Cancer Variant through the Combined Use of Chemical Biology and X-ray Crystallography. Biochemistry, 2020, 59, 955-963.	2.5	0
452	Preferential DNA Polymerase \hat{I}^2 Reverse Reaction with Imidodiphosphate. ACS Omega, 2020, 5, 15317-15324.	3.5	0
453	DNA Polymerase β, Eukaryotic. , 2004, , 708-712.		0
454	Response to "T-loop formation and abrupt telomere shortening". Nature Reviews Genetics, 2004, 5, .	16.3	0
455	T-loop formation and abrupt telomere shortening. Nature Reviews Genetics, 2004, 5, .	16.3	0
456	Strategic Planning: Establishing Need and Clarifying Motivation. Environmental Health Perspectives, 2005, 113, A506-A506.	6.0	0
457	NMR study of the effect of Zn on conformational activation of rat DNA polymerase \hat{l}^2 . FASEB Journal, 2010, 24, 876.6.	0.5	0
458	Inhibition of HIV-1 Reverse Transcriptase-Catalyzed Synthesis by Intercalated DNA Benzo[a]Pyrene 7,8-Dihydrodiol-9,10-Epoxide Adducts. PLoS ONE, 2013, 8, e72131.	2.5	0
459	Synthesis of Catalytically Active Polymerase $\hat{I}\pm$ by in Vitro Translation of Calf RNA. Advances in Experimental Medicine and Biology, 1984, 179, 343-353.	1.6	0
460	Mechanistic Analysis of HIV-1 Reverse Transcriptase. , 1991, , 1-19.		0
461	Understanding base lesion DNA repair (477.2). FASEB Journal, 2014, 28, 477.2.	0.5	0
462	Enzymatic Activity Assays for Base Excision Repair Enzymes in Cell Extracts from Vertebrate Cells. Bio-protocol, 2015, 5, .	0.4	0
463	DNA Polymerase Mediates Robust Base Lesion Repair in Mammalian Mitochondria. SSRN Electronic Journal, O, , .	0.4	0
464	Environmental Medicine at a Crossroad: Health in the United States. Environmental Health Perspectives, 2000, 108, A56.	6.0	0