
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3208669/publications.pdf Version: 2024-02-01

VEDÃ3NICA PINO

#	Article	IF	CITATIONS
1	Surfactant solvation effects and micelle formation in ionic liquids. Chemical Communications, 2003, , 2444.	2.2	338
2	Ionic liquids in dispersive liquid-liquid microextraction. TrAC - Trends in Analytical Chemistry, 2013, 51, 87-106.	5.8	246
3	Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? – A review. Analytica Chimica Acta, 2016, 939, 26-41.	2.6	171
4	The metal–organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta, 2015, 139, 13-20.	2.9	144
5	Green solvents in analytical chemistry. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 42-50.	3.2	141
6	Dispersive liquid–liquid microextraction versus single-drop microextraction for the determination of several endocrine-disrupting phenols from seawaters. Talanta, 2010, 80, 1611-1618.	2.9	130
7	Utilization of a benzyl functionalized polymeric ionic liquid for the sensitive determination of polycyclic aromatic hydrocarbons; parabens and alkylphenols in waters using solid-phase microextraction coupled to gas chromatography–flame ionization detection. Journal of Chromatography A. 2010. 1217. 7189-7197.	1.8	122
8	Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. TrAC - Trends in Analytical Chemistry, 2017, 90, 114-134.	5.8	119
9	Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. Journal of Chromatography A, 2017, 1500, 1-23.	1.8	114
10	Nonionic surfactant mixtures: a new cloud-point extraction approach for the determination of PAHs in seawater using HPLC with fluorimetric detection. Analytica Chimica Acta, 2004, 518, 165-172.	2.6	105
11	Determination of water pollutants by direct-immersion solid-phase microextraction using polymeric ionic liquid coatings. Journal of Chromatography A, 2010, 1217, 1236-1243.	1.8	105
12	Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography—A review. Analytica Chimica Acta, 2012, 714, 20-37.	2.6	103
13	A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions. Journal of Chromatography A. 2016. 1436. 42-50.	1.8	100
14	Solvent systems for countercurrent chromatography: An aqueous two phase liquid system based on a room temperature ionic liquid. Journal of Chromatography A, 2007, 1151, 65-73.	1.8	94
15	Determination of polycyclic aromatic hydrocarbons in marine sediments by high-performance liquid chromatography after microwave-assisted extraction with micellar media. Journal of Chromatography A, 2000, 869, 515-522.	1.8	93
16	Role of counteranions in polymeric ionic liquid-based solid-phase microextraction coatings for the selective extraction of polar compounds. Analytica Chimica Acta, 2011, 687, 141-149.	2.6	93
17	lonic Liquid-Based Surfactants in Separation Science. Separation Science and Technology, 2012, 47, 264-276.	1.3	92
18	The ionic liquid 1-hexadecyl-3-methylimidazolium bromide as novel extracting system for polycyclic aromatic hydrocarbons contained in sediments using focused microwave-assisted extraction. Journal of Chromatography A, 2008, 1182, 145-152.	1.8	87

#	Article	IF	CITATIONS
19	Metal-Organic Frameworks in Green Analytical Chemistry. Separations, 2019, 6, 33.	1.1	80
20	Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent–water mixtures. Journal of Colloid and Interface Science, 2009, 333, 548-556.	5.0	76
21	Exploiting the Versatility of Ionic Liquids in Separation Science: Determination of Low-Volatility Aliphatic Hydrocarbons and Fatty Acid Methyl Esters Using Headspace Solid-Phase Microextraction Coupled to Gas Chromatography. Analytical Chemistry, 2009, 81, 7107-7112.	3.2	76
22	Micellar microwave-assisted extraction combined with solid-phase microextraction for the determination of polycyclic aromatic hydrocarbons in a certified marine sediment. Analytica Chimica Acta, 2003, 477, 81-91.	2.6	75
23	Metal–Organic Frameworks as Key Materials for Solid-Phase Microextraction Devices—A Review. Separations, 2019, 6, 47.	1.1	74
24	Determination of polycyclic aromatic hydrocarbons in seawater by high-performance liquid chromatography with fluorescence detection following micelle-mediated preconcentration. Journal of Chromatography A, 2002, 949, 291-299.	1.8	71
25	Ionic liquids as mobile phase additives in high-performance liquid chromatography with electrochemical detection: Application to the determination of heterocyclic aromatic amines in meat-based infant foods. Talanta, 2009, 79, 590-597.	2.9	67
26	Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 2016, 934, 106-113.	2.6	64
27	Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction. Talanta, 2017, 172, 86-94.	2.9	64
28	Ionic liquids as a tool for determination of metals and organic compounds in food analysis. TrAC - Trends in Analytical Chemistry, 2011, 30, 1598-1619.	5.8	63
29	Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters. Talanta, 2016, 158, 125-133.	2.9	60
30	In-situ ionic liquid-dispersive liquid-liquid microextraction method to determine endocrine disrupting phenols in seawaters and industrial effluents. Mikrochimica Acta, 2011, 174, 213-222.	2.5	59
31	A novel in situ preconcentration method with ionic liquid-based surfactants resulting in enhanced sensitivity for the extraction of polycyclic aromatic hydrocarbons from toasted cereals. Journal of Chromatography A, 2012, 1227, 29-37.	1.8	58
32	An in-situ extraction–preconcentration method using ionic liquid-based surfactants for the determination of organic contaminants contained in marine sediments. Talanta, 2012, 99, 972-983.	2.9	57
33	Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Talanta, 2014, 121, 153-162.	2.9	55
34	Vacuum-assisted headspace-solid phase microextraction for determining volatile free fatty acids and phenols. Investigations on the effect of pressure on competitive adsorption phenomena in a multicomponent system. Analytica Chimica Acta, 2017, 962, 41-51.	2.6	53
35	Insights in the analytical performance of neat metal-organic frameworks in the determination of pollutants of different nature from waters using dispersive miniaturized solid-phase extraction and liquid chromatography. Talanta, 2018, 179, 775-783.	2.9	52
36	Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID. Mikrochimica Acta, 2018, 185, 341.	2.5	49

#	Article	IF	CITATIONS
37	Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media – A review. Analytica Chimica Acta, 2021, 1143, 225-249.	2.6	45
38	Greenness of magnetic nanomaterials in miniaturized extraction techniques: A review. Talanta, 2021, 225, 122053.	2.9	45
39	Evolution and current advances in sorbent-based microextraction configurations. Journal of Chromatography A, 2020, 1634, 461670.	1.8	44
40	Examination of analyte partitioning to monocationic and dicationic imidazolium-based ionic liquid aggregates using solid-phase microextraction–gas chromatography. Journal of Chromatography A, 2007, 1148, 92-99.	1.8	42
41	Use of ionic liquid aggregates of 1-hexadecyl-3-butyl imidazolium bromide in a focused-microwave assisted extraction method followed by high-performance liquid chromatography with ultraviolet and fluorescence detection to determine the 15+1 EU priority PAHs in toasted cereals ("gofiosâ€). Talanta, 2011, 85, 1199-1206.	2.9	42
42	Gold nanoparticles based solidâ€phase microextraction coatings for determining organochlorine pesticides in aqueous environmental samples. Journal of Separation Science, 2017, 40, 2009-2021.	1.3	41
43	Biopolymers in sorbent-based microextraction methods. TrAC - Trends in Analytical Chemistry, 2020, 125, 115839.	5.8	41
44	Influence of Ligand Functionalization of UiO-66-Based Metal-Organic Frameworks When Used as Sorbents in Dispersive Solid-Phase Analytical Microextraction for Different Aqueous Organic Pollutants. Molecules, 2018, 23, 2869.	1.7	40
45	Ultrasonic micellar extraction of polycyclic aromatic hydrocarbons from marine sediments. Talanta, 2001, 54, 15-23.	2.9	36
46	Developing qualitative extraction profiles of coffee aromas utilizing polymeric ionic liquid sorbent coatings in headspace solid-phase microextraction gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 401, 2965-2976.	1.9	36
47	Solid-phase microextraction coatings based on the metal-organic framework ZIF-8: Ensuring stable and reusable fibers. Talanta, 2020, 215, 120910.	2.9	36
48	Metabolism and toxicology of heterocyclic aromatic amines when consumed in diet: Influence of the genetic susceptibility to develop human cancer. A review. Food Research International, 2008, 41, 327-340.	2.9	34
49	Determining the stoichiometry and binding constants of inclusion complexes formed between aromatic compounds and β-cyclodextrin by solid-phase microextraction coupled to high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 5242-5248.	1.8	34
50	A green metal–organic framework to monitor water contaminants. RSC Advances, 2018, 8, 31304-31310.	1.7	34
51	Coupling the extraction efficiency of imidazolium-based ionic liquid aggregates with solid-phase microextraction-gas chromatography–mass spectrometry. Journal of Chromatography A, 2008, 1214, 23-29.	1.8	33
52	Do ion tethered functional groups affect IL solvent properties? The case of sulfoxides and sulfones. Chemical Communications, 2006, , 646.	2.2	32
53	Interfacial and aggregation behavior of dicationic and tricationic ionic liquid-based surfactants in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 224-234.	2.3	32
54	Solid-Phase Microextraction Coupled to Gas Chromatography/Mass Spectrometry for Determining Polycyclic Aromatic Hydrocarbonâ^'Micelle Partition Coefficients. Analytical Chemistry, 2004, 76, 4572-4578.	3.2	31

#	Article	IF	CITATIONS
55	Ionic liquids versus ionic liquid-based surfactants in dispersive liquid–liquid microextraction for determining copper in water by flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2016, 96, 101-118.	1.8	31
56	Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid–liquid microextraction method for determining personal care products. Journal of Chromatography A, 2018, 1559, 102-111.	1.8	31
57	Determination of solute partition behavior with room-temperature ionic liquid based micellar gas–liquid chromatography stationary phases using the pseudophase model. Journal of Chromatography A, 2006, 1115, 217-224.	1.8	30
58	Green solid-phase microextraction fiber coating based on the metal-organic framework CIM-80(Al): Analytical performance evaluation in direct immersion and headspace using gas chromatography and mass spectrometry for the analysis of water, urine and brewed coffee. Analytica Chimica Acta, 2020, 1133, 137-149.	2.6	30
59	Cloud-point preconcentration and HPLC determination of polycyclic aromatic hydrocarbons in marine sediments. Fresenius' Journal of Analytical Chemistry, 2001, 371, 526-531.	1.5	29
60	A Simple in vivo Assay Using Amphipods for the Evaluation of Potential Biocompatible Metal-Organic Frameworks. Frontiers in Bioengineering and Biotechnology, 2021, 9, 584115.	2.0	28
61	Theory and Use of the Pseudophase Model in Gasâ^'Liquid Chromatographic Enantiomeric Separations. Analytical Chemistry, 2006, 78, 113-119.	3.2	27
62	Micelle-mediated extractions using nonionic surfactant mixtures and HPLC-UV to determine endocrine-disrupting phenols in seawaters. Analytical and Bioanalytical Chemistry, 2008, 391, 735-744.	1.9	27
63	Headspace-single drop microextraction (HS-SDME) in combination with high-performance liquid chromatography (HPLC) to evaluate the content of alkyl- and methoxy-phenolic compounds in biomass smoke. Talanta, 2011, 85, 1265-1273.	2.9	26
64	Double salts of ionic-liquid-based surfactants in microextraction: application of their mixed hemimicelles as novel sorbents in magnetic-assisted micro-dispersive solid-phase extraction for the determination of phenols. Analytical and Bioanalytical Chemistry, 2015, 407, 8753-8764.	1.9	26
65	Automated direct-immersion solid-phase microextraction using crosslinked polymeric ionic liquid sorbent coatings for the determination of water pollutants by gas chromatography. Analytical and Bioanalytical Chemistry, 2015, 407, 4615-4627.	1.9	25
66	Salt-induced ionic liquid-based microextraction using a low cytotoxic guanidinium ionic liquid and liquid chromatography with fluorescence detection to determine monohydroxylated polycyclic aromatic hydrocarbons in urine. Analytical and Bioanalytical Chemistry, 2018, 410, 4701-4713.	1.9	25
67	Focused microwave-assisted micellar extraction combined with solid-phase microextraction—gas chromatography/mass spectrometry to determine chlorophenols in wood samples. Analytica Chimica Acta, 2007, 582, 10-18.	2.6	24
68	Determination of volatile polycyclic aromatic hydrocarbons in waters using headspace solid-phase microextraction with a benzyl-functionalized crosslinked polymeric ionic liquid coating. Environmental Technology (United Kingdom), 2017, 38, 1897-1904.	1.2	24
69	Role of Ionic Liquids in Composites in Analytical Sample Preparation. Separations, 2020, 7, 37.	1.1	23
70	Utilization of solid-phase microextraction–high-performance liquid chromatography in the determination of aromatic analyte partitioning to imidazolium-based ionic liquid micelles. Journal of Chromatography A, 2009, 1216, 948-955.	1.8	22
71	Highâ€ŧhroughput microscale extraction using ionic liquids and derivatives: A review. Journal of Separation Science, 2020, 43, 1890-1907.	1.3	22
72	Headspace solid-phase microextraction based on the metal-organic framework CIM-80(Al) coating to determine volatile methylsiloxanes and musk fragrances in water samples using gas chromatography and mass spectrometry. Talanta, 2021, 232, 122440.	2.9	21

#	Article	IF	CITATIONS
73	Application of a Pillared-Layer Zn-Triazolate Metal-Organic Framework in the Dispersive Miniaturized Solid-Phase Extraction of Personal Care Products from Wastewater Samples. Molecules, 2019, 24, 690.	1.7	20
74	Multiple headspace solid-phase microextraction for quantifying volatile free fatty acids in cheeses. Talanta, 2014, 129, 183-190.	2.9	19
75	Core-shell microparticles formed by the metal-organic framework CIM-80(Al) (Silica@CIM-80(Al)) as sorbent material in miniaturized dispersive solid-phase extraction. Talanta, 2020, 211, 120723.	2.9	19
76	Study of the interactions between phenolic compounds and micellar media using micellar solid-phase microextraction/gas chromatography. Journal of Chromatography A, 2005, 1099, 64-74.	1.8	18
77	A novel preconcentration strategy for extraction methods based on common cationic surfactants: An alternative to classical coacervative extraction. Journal of Chromatography A, 2012, 1257, 9-18.	1.8	18
78	Recent efforts to increase greenness in chromatography. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100536.	3.2	18
79	Micellar Extraction of Polycyclic Aromatic Hydrocarbons from Certified Marine Sediment. International Journal of Environmental Analytical Chemistry, 2001, 81, 281-294.	1.8	17
80	Determination of the alkyl- and methoxy-phenolic content in wood extractives by micellar solid-phase microextraction and gas chromatography–mass spectrometry. Talanta, 2007, 73, 505-513.	2.9	15
81	Mixed Functionalization of Organic Ligands in UiO-66: A Tool to Design Metal–Organic Frameworks for Tailored Microextraction. Molecules, 2019, 24, 3656.	1.7	15
82	Extraction With Ionic Liquids-Organic Compounds. , 2020, , 499-537.		14
83	Coupling micelle-mediated extraction using mixtures of surfactants and fluorescence measurements with a fiber-optic for the screening of PAHs in seawater. Analyst, The, 2005, 130, 571-577.	1.7	13
84	Focused Microwaveâ€Assisted Extraction and HPLC with Electrochemical Detection to Determine Heterocyclic Amines in Meat Extracts. Journal of Liquid Chromatography and Related Technologies, 2007, 30, 27-42.	0.5	13
85	Utilization of an ionic liquid <i>in situ</i> preconcentration method for the determination of the 15 + 1 European Union polycyclic aromatic hydrocarbons in drinking water and fruitâ€ŧea infusions. Journal of Separation Science, 2013, 36, 2496-2506.	1.3	13
86	Anti- Acanthamoeba activity of Tunisian Thymus capitatus essential oil and organic extracts. Experimental Parasitology, 2017, 183, 231-235.	0.5	13
87	Ionic liquid-based miniaturized aqueous biphasic system to develop an environmental-friendly analytical preconcentration method. Talanta, 2019, 203, 305-313.	2.9	13
88	Monitoring chlorophenols in industrial effluents by solid-phase microextraction–gas chromatography–mass spectrometry. International Journal of Environmental Analytical Chemistry, 2007, 87, 159-175.	1.8	12
89	A simplified vortex-assisted emulsification microextraction method for determining personal care products in environmental water samples by ultra-high-performance liquid chromatography. Analytical Methods, 2015, 7, 1825-1833.	1.3	12
90	Evaluation of Structurally Different Ionic Liquid-Based Surfactants in a Green Microwave-Assisted Extraction for the Flavonoids Profile Determination of Mangifera sp. and Passiflora sp. Leaves from Canary Islands. Molecules, 2020, 25, 4734.	1.7	12

#	Article	IF	CITATIONS
91	The Use of Ferrofluids in Analytical Sample Preparation: A Review. Separations, 2021, 8, 47.	1.1	12
92	Thin-film microextraction using the metal-organic framework DUT-52 for determining endocrine disrupting chemicals in cosmetics. Microchemical Journal, 2022, 181, 107685.	2.3	12
93	Monitoring polycyclic aromatic hydrocarbons in seawaters and wastewaters using a dispersive liquid–liquid microextraction method. Environmental Technology (United Kingdom), 2013, 34, 607-616.	1.2	11
94	Monitoring trihalomethanes and nitrogenous disinfection by-products in blending desalinated waters using solid-phase microextraction and gas chromatography. Environmental Technology (United Kingdom), 2017, 38, 911-922.	1.2	11
95	Influence of vegetable coagulant and ripening time on the lipolytic and sensory profile of cheeses made with raw goat milk from Canary breeds. Food Science and Technology International, 2017, 23, 254-264.	1.1	11
96	A guanidinium ionic liquid-based surfactant as an adequate solvent to separate and preconcentrate cadmium and copper in water using <i>in situ</i> dispersive liquid–liquid microextraction. Analytical Methods, 2018, 10, 1529-1537.	1.3	11
97	Braid solid-phase microextraction of polycyclic aromatic hydrocarbons by using fibers coated with silver-based nanomaterials in combination with HPLC with fluorometric detection. Mikrochimica Acta, 2019, 186, 311.	2.5	11
98	Zirconium-Based Metal–Organic Framework Mixed-Matrix Membranes as Analytical Devices for the Trace Analysis of Complex Cosmetic Samples in the Assessment of Their Personal Care Product Content. ACS Applied Materials & Interfaces, 2022, 14, 4510-4521.	4.0	11
99	Trends offered by ionic liquid-based surfactants: Applications in stabilization, separation processes, and within the petroleum industry. Separation and Purification Reviews, 2023, 52, 164-192.	2.8	11
100	Sustainable Micro-Scale Extraction of Bioactive Phenolic Compounds from Vitis vinifera Leaves with Ionic Liquid-Based Surfactants. Molecules, 2020, 25, 3072.	1.7	10
101	Use of a pH-sensitive polymer in a microextraction and preconcentration method directly combined with high-performance liquid chromatography. Journal of Chromatography A, 2020, 1619, 460910.	1.8	10
102	Vortex-assisted emulsification microextraction followed by in-syringe ultrasound-assisted back-microextraction to determine haloacetic acids in waters. Analytical Methods, 2014, 6, 4115-4123.	1.3	9
103	Insights into Paraben Adsorption by Metal–Organic Frameworks for Analytical Applications. ACS Applied Materials & Interfaces, 2021, 13, 45639-45650.	4.0	9
104	Analytical Microextraction Techniques. , 2017, , .		9
105	Correlations Between Phenols-Micelles Partition Coefficients and Several Molecular Descriptors. An Approach to Predict the Phenols Behaviour in MSPME. Chromatographia, 2006, 63, 167-174.	0.7	8
106	Ionic Liquid-based Surfactants: A Step Forward. RSC Smart Materials, 2017, , 53-78.	0.1	8
107	Reversed Phase Liquid Chromatographic Method for Separation and Determination of Positional Isomeric Mono―and Diâ€substituted Anilines and Phenols on an R,Sâ€Hydroxypropyl Ether βâ€Cyclodextrin Column. Journal of Liquid Chromatography and Related Technologies, 2003, 26, 1-15.	0.5	7
108	Hybrid Materials Formed with Green Metal-Organic Frameworks and Polystyrene as Sorbents in Dispersive Micro-Solid-Phase Extraction for Determining Personal Care Products in Micellar Cosmetics. Molecules, 2022, 27, 813.	1.7	6

#	Article	IF	CITATIONS
109	Micellar solid-phase microextraction for determining partition coefficients of substituted polycyclic aromatic hydrocarbons in micellar media: possible prediction of hydrocarbon–micelle behaviour. Analytical and Bioanalytical Chemistry, 2007, 387, 2271-2281.	1.9	5
110	Monitoring trihalomethanes in chlorinated waters using a dispersive liquid–liquid microextraction method with a non-chlorinated organic solvent and gas chromatography–mass spectrometry. Environmental Technology (United Kingdom), 2017, 38, 718-729.	1.2	5
111	Using Design of Experiments to Optimize a Screening Analytical Methodology Based on Solid-Phase Microextraction/Gas Chromatography for the Determination of Volatile Methylsiloxanes in Water. Molecules, 2021, 26, 3429.	1.7	5
112	Evaluation of the Uncertainty Associated to the Determination of Heavy Metals in Seawater Using Graphite Furnace Atomic Absorption Spectrometry. Analytical Letters, 2007, 40, 3322-3342.	1.0	4
113	Effect of the inclusion of banana silage in the diet of goats on physicochemical and sensory characteristics of cheeses at different ripening times. Small Ruminant Research, 2017, 149, 52-61.	0.6	4
114	Reticular materials as chiral stationary phases in chromatography. Journal of Chromatography Open, 2021, 1, 100002.	0.8	4
115	A green miniaturized aqueous biphasic system prepared with cholinium chloride and a phosphate salt to extract and preconcentrate personal care products in wastewater samples. Journal of Chromatography A, 2021, 1648, 462219.	1.8	3
116	Analytical Applications of Ionic Liquids in Chromatographic and Electrophoretic Separation Techniques. Green Chemistry and Sustainable Technology, 2016, , 193-233.	0.4	2
117	Metallic Coatings in Solid-Phase Microextraction: Environmental Applications. , 2018, , 217-243.		2
118	Ionic liquids and derivatives in gas chromatography. , 2016, , 45-82.		1
119	Reticular materials in sorbent-based extraction methods. , 2021, , 323-376.		1
120	Magnetic ionic liquids in analytical sample separation techniques. , 2022, , 141-170.		1
121	lonic liquids and polymeric ionic liquids as sorbents in micro-solid-phase extraction and solid-phase microextraction. , 2022, , 103-140.		1