
Benoît Ranchoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3208027/publications.pdf Version: 2024-02-01

RENOîT PANCHOUX

#	Article	IF	CITATIONS
1	Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension. Circulation, 2015, 131, 1006-1018.	1.6	441
2	Chemotherapy-Induced Pulmonary Hypertension. American Journal of Pathology, 2015, 185, 356-371.	3.8	149
3	Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension. Circulation, 2016, 133, 1371-1385.	1.6	141
4	Nebivolol for Improving Endothelial Dysfunction, Pulmonary Vascular Remodeling, and Right Heart Function inÂPulmonary Hypertension. Journal of the American College of Cardiology, 2015, 65, 668-680.	2.8	119
5	Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover) Tj ETQq1 1 0.7	84314 rgl 1.7	BT /Qyerlock
6	Mitomycin-Induced Pulmonary Veno-Occlusive Disease. Circulation, 2015, 132, 834-847.	1.6	103
7	miR-223 reverses experimental pulmonary arterial hypertension. American Journal of Physiology - Cell Physiology, 2015, 309, C363-C372.	4.6	103
8	DNA Damage and Pulmonary Hypertension. International Journal of Molecular Sciences, 2016, 17, 990.	4.1	85
9	NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Circulation, 2018, 137, 2371-2389.	1.6	75
10	Metabolic Syndrome Exacerbates Pulmonary Hypertension due to Left Heart Disease. Circulation Research, 2019, 125, 449-466.	4.5	73
11	FOXM1 promotes pulmonary artery smooth muscle cell expansion in pulmonary arterial hypertension. Journal of Molecular Medicine, 2018, 96, 223-235.	3.9	62
12	Sirtuin 1 regulates pulmonary artery smooth muscle cell proliferation. Journal of Hypertension, 2018, 36, 1164-1177.	0.5	48
13	N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats. Respiratory Research, 2014, 15, 65.	3.6	38
14	Gut–Lung Connection in Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 402-405.	2.9	34
15	MicroRNA networks in pulmonary arterial hypertension. Current Opinion in Oncology, 2016, 28, 72-82.	2.4	27
16	Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 118-131.	2.9	24
17	The BET Bromodomain Inhibitor I-BET-151 Induces Structural and Functional Alterations of the Heart Mitochondria in Healthy Male Mice and Rats. International Journal of Molecular Sciences, 2019, 20, 1527.	4.1	17
18	Enhanced Pulmonary Artery Radiodensity in Pulmonary Arterial Hypertension: A Sign of Early Calcification?. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 799-802.	5.6	6

Benoã®t Ranchoux

#	Article	IF	CITATIONS
19	CXCL13 in Tertiary Lymphoid Tissues: Sites of Production Are Different from Sites of Functional Localization. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 369-370.	5.6	4
20	Response to Letter Regarding Article, "Mitomycin-Induced Pulmonary Veno-Occlusive Disease: Evidence From Human Disease and Animal Model― Circulation, 2016, 133, e592-3.	1.6	4
21	Chemotherapy-induced pulmonary hypertension: Role of alkylating agents. , 2015, , .		3
22	Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension. , 2020, , 63-70.		2
23	LSC Abstract – Glutamatergic signaling through pulmonary vascular NMDA receptors in pulmonary hypertension. , 2015, , .		Ο
24	Mitomycin-induced pulmonary veno-occlusive disease: Experience from the French pulmonary hypertension network. , 2015, , .		0
25	Bacterial translocation in pulmonary hypertension. , 2017, , .		Ο
26	NMDA receptor activation promotes vascular remodeling and pulmonary arterial hypertension. , 2018, , \cdot		0
27	Fine structural modifications of heparan sulfate sulfation patterns in lung are associated with functional effects in Precapillary Pulmonary Hypertension. , 2018, , .		Ο
28	Late Breaking Abstract - Inflammation and metabolic syndrome exacerbate pulmonary hypertension associated with left heart disease. , 2019, , .		0