List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3207903/publications.pdf Version: 2024-02-01

		31976	31849
218	10,816	53	101
papers	citations	h-index	g-index
210	210	210	2020
219	219	219	3028
all docs	docs citations	times ranked	citing authors

Сная осн

#	Article	IF	CITATIONS
1	Electron acceleration from the breaking of relativistic plasma waves. Nature, 1995, 377, 606-608.	27.8	750
2	Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Physical Review Special Topics: Accelerators and Beams, 2007, 10, .	1.8	710
3	Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature, 2007, 445, 741-744.	27.8	604
4	Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes. Physical Review Letters, 2010, 104, 025003.	7.8	434
5	High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature, 2014, 515, 92-95.	27.8	403
6	Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nature Physics, 2012, 8, 95-99.	16.7	358
7	Self-Guided Laser Wakefield Acceleration beyond 1ÂGeV Using Ionization-Induced Injection. Physical Review Letters, 2010, 105, 105003.	7.8	338
8	Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves. Physical Review Letters, 1993, 70, 37-40.	7.8	307
9	Experimental Measurements of Hot Electrons Generated by Ultraintense (>1019W/cm2) Laser-Plasma Interactions on Solid-Density Targets. Physical Review Letters, 1998, 81, 822-825.	7.8	263
10	Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves. Nature, 1984, 311, 525-529.	27.8	256
11	Demonstration of a Narrow Energy Spread, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>â^1/4</mml:mo><mml:mn>0.5</mml:mn><mml:mtext> </mml:mtext><mml:mtext Beam from a Two-Stage Laser Wakefield Accelerator. Physical Review Letters, 2011, 107, 045001.</mml:mtext </mml:math 	t> </td <td>213 mml:mtext></td>	213 mml:mtext>
12	Relativistic Plasma-Wave Excitation by Collinear Optical Mixing. Physical Review Letters, 1985, 54, 2343-2346.	7.8	192
13	Laser-Driven Shock Acceleration of Monoenergetic Ion Beams. Physical Review Letters, 2012, 109, 215001.	7.8	184
14	Forward Raman Instability and Electron Acceleration. Physical Review Letters, 1981, 47, 1285-1288.	7.8	171
15	Near-GeV-Energy Laser-Wakefield Acceleration of Self-Injected Electrons in a Centimeter-Scale Plasma Channel. Physical Review Letters, 2004, 93, 185002.	7.8	168
16	Propagation of Intense Subpicosecond Laser Pulses through Underdense Plasmas. Physical Review Letters, 1995, 74, 4659-4662.	7.8	166
17	Multi-GeV Energy Gain in a Plasma-Wakefield Accelerator. Physical Review Letters, 2005, 95, 054802.	7.8	160
18	Fifteen terawatt picosecond CO_2 laser system. Optics Express, 2010, 18, 17865.	3.4	149

#	Article	IF	CITATIONS
19	Ionization-Induced Electron Trapping in Ultrarelativistic Plasma Wakes. Physical Review Letters, 2007, 98, 084801.	7.8	138
20	Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield. Nature, 2015, 524, 442-445.	27.8	133
21	Plasma Accelerators at the Energy Frontier and on Tabletops. Physics Today, 2003, 56, 47-53.	0.3	125
22	Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature, 1994, 368, 527-529.	27.8	124
23	Frequency upconversion of electromagnetic radiation upon transmission into an ionization front. Physical Review Letters, 1992, 68, 946-949.	7.8	122
24	The development of laser- and beam-driven plasma accelerators as an experimental field. Physics of Plasmas, 2007, 14, 055501.	1.9	111
25	X-Ray Emission from Betatron Motion in a Plasma Wiggler. Physical Review Letters, 2002, 88, 135004.	7.8	107
26	Plasma wakefield acceleration experiments at FACET. New Journal of Physics, 2010, 12, 055030.	2.9	103
27	Plasma-Wakefield Acceleration of an Intense Positron Beam. Physical Review Letters, 2003, 90, 214801.	7.8	102
28	Plasma wave wigglers for free-electron lasers. IEEE Journal of Quantum Electronics, 1987, 23, 1571-1577.	1.9	98
29	Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator. Nature Communications, 2016, 7, 11785.	12.8	93
30	2020 roadmap on plasma accelerators. New Journal of Physics, 2021, 23, 031101.	2.9	89
31	Meter-Scale Plasma-Wakefield Accelerator Driven by a Matched Electron Beam. Physical Review Letters, 2004, 93, .	7.8	88
32	Ion acceleration from laser-driven electrostatic shocks. Physics of Plasmas, 2013, 20, .	1.9	85
33	Megafilament in air formed by self-guided terawatt long-wavelength infrared laser. Nature Photonics, 2019, 13, 41-46.	31.4	83
34	Transverse Envelope Dynamics of a 28.5-GeV Electron Beam in a Long Plasma. Physical Review Letters, 2002, 88, 154801.	7.8	81
35	High energy density plasma science with an ultrarelativistic electron beam. Physics of Plasmas, 2002, 9, 1845-1855.	1.9	81
36	Generating High-Brightness Electron Beams via Ionization Injection by Transverse Colliding Lasers in a Plasma-Wakefield Accelerator. Physical Review Letters, 2013, 111, 015003.	7.8	80

#	Article	IF	CITATIONS
37	Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles. Physical Review Letters, 2016, 116, 124801.	7.8	73
38	Photo-ionized lithium source for plasma accelerator applications. IEEE Transactions on Plasma Science, 1999, 27, 791-799.	1.3	70
39	Saturation of Beat-Excited Plasma Waves by Electrostatic Mode Coupling. Physical Review Letters, 1986, 56, 2629-2632.	7.8	69
40	Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Physics and Controlled Fusion, 2014, 56, 084015.	2.1	69
41	Acceleration and scattering of injected electrons in plasma beat wave accelerator experiments*. Physics of Plasmas, 1994, 1, 1753-1760.	1.9	67
42	Hosing Instability in the Blow-Out Regime for Plasma-Wakefield Acceleration. Physical Review Letters, 2007, 99, 255001.	7.8	67
43	Self-Guiding of Ultrashort, Relativistically Intense Laser Pulses through Underdense Plasmas in the Blowout Regime. Physical Review Letters, 2009, 102, 175003.	7.8	63
44	Plasma wakefield acceleration experiments at FACET II. Plasma Physics and Controlled Fusion, 2018, 60, 034001.	2.1	63
45	Energy doubler for a linear collider. Physical Review Special Topics: Accelerators and Beams, 2002, 5, .	1.8	60
46	Angular Dependence of Betatron X-Ray Spectra from a Laser-Wakefield Accelerator. Physical Review Letters, 2013, 111, 235004.	7.8	60
47	Ultrarelativistic-Positron-Beam Transport through Meter-Scale Plasmas. Physical Review Letters, 2003, 90, 205002.	7.8	59
48	Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure. Nature Photonics, 2018, 12, 489-494.	31.4	59
49	E-157: A 1.4-m-long plasma wake field acceleration experiment using a 30 GeV electron beam from the Stanford Linear Accelerator Center Linac. Physics of Plasmas, 2000, 7, 2241-2248.	1.9	57
50	Development of a nanosecond-laser-pumped Raman amplifier for short laser pulses in plasma. Physics of Plasmas, 2009, 16, 123113.	1.9	57
51	Role of Direct Laser Acceleration of Electrons in a Laser Wakefield Accelerator with Ionization Injection. Physical Review Letters, 2017, 118, 064801.	7.8	57
52	Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel. Physical Review Letters, 2004, 92, 095004.	7.8	56
53	Resonant Self-Focusing of Laser Light in a Plasma. Physical Review Letters, 1982, 48, 874-877.	7.8	54
54	High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime. Physical Review Accelerators and Beams, 2017, 20	1.6	53

#	Article	IF	CITATIONS
55	Excitation of the modified Simon–Hoh instability in an electron beam produced plasma. Physics of Fluids B, 1993, 5, 1681-1694.	1.7	51
56	Demonstration of Microwave Generation from a Static Field by a Relativistic Ionization Front in a Capacitor Array. Physical Review Letters, 1996, 77, 4764-4767.	7.8	51
57	Plasma Accelerators. Scientific American, 2006, 294, 40-47.	1.0	51
58	Perspectives on the generation of electron beams from plasma-based accelerators and their near and long term applications. Physics of Plasmas, 2020, 27, .	1.9	50
59	Phase-Space Dynamics of Ionization Injection in Plasma-Based Accelerators. Physical Review Letters, 2014, 112, 035003.	7.8	49
60	Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs. Journal of Applied Physics, 2005, 98, 026101.	2.5	48
61	High Energy Gain of Trapped Electrons in a Tapered, Diffraction-Dominated Inverse-Free-Electron Laser. Physical Review Letters, 2005, 94, 154801.	7.8	47
62	Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths. Physical Review Special Topics: Accelerators and Beams, 2014, 17, .	1.8	46
63	Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses. Physical Review Letters, 2017, 118, 134801.	7.8	45
64	Halo Formation and Emittance Growth of Positron Beams in Plasmas. Physical Review Letters, 2008, 101, 055001.	7.8	44
65	Femtosecond Probing of Plasma Wakefields and Observation of the Plasma Wake Reversal Using a Relativistic Electron Bunch. Physical Review Letters, 2017, 119, 064801.	7.8	44
66	Generation of 160-ps terawatt-power CO_2 laser pulses. Optics Letters, 1999, 24, 1717.	3.3	43
67	Amplification of multi-gigawatt 3 ps pulses in an atmospheric CO_2 laser using ac Stark effect. Optics Express, 2012, 20, 13762.	3.4	43
68	Role of direct laser acceleration in energy gained by electrons in a laser wakefield accelerator with ionization injection. Plasma Physics and Controlled Fusion, 2014, 56, 084006.	2.1	42
69	Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition. Physics of Plasmas, 2011, 18, .	1.9	38
70	Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator. Physical Review Letters, 2018, 120, 124802.	7.8	38
71	Self-modulated laser wakefield accelerators as x-ray sources. Plasma Physics and Controlled Fusion, 2016, 58, 034018.	2.1	37
72	9 GeV energy gain in a beam-driven plasma wakefield accelerator. Plasma Physics and Controlled Fusion, 2016, 58, 034017.	2.1	35

#	Article	IF	CITATIONS
73	Plasma production via field ionization. Physical Review Special Topics: Accelerators and Beams, 2006, 9,	1.8	33
74	Acceleration of a trailing positron bunch in a plasma wakefield accelerator. Scientific Reports, 2017, 7, 14180.	3.3	32
75	Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mn>1 </mml:mn> <mml:mtext>  </mml:mtext> xml:mtext> a€‰ mathvariant="normal"> m </mml:mrow> </mml:math> lasers. Physical Review Accelerators	nl:m teø t> <r< td=""><td>nmå⊉ni>μ∢</td></r<>	nmå⊉ni>μ∢
76	and Beams, 2018, 21, . Coupling between High-Frequency Plasma Waves in Laser-Plasma Interactions. Physical Review Letters, 1995, 74, 2236-2239.	7.8	31
77	Optical Kerr switching technique for the production of a picosecond, multiwavelength CO_2 laser pulse. Applied Optics, 2002, 41, 3743.	2.1	31
78	Bremsstrahlung hard x-ray source driven by an electron beam from a self-modulated laser wakefield accelerator. Plasma Physics and Controlled Fusion, 2018, 60, 054008.	2.1	31
79	Phase Space Dynamics of a Plasma Wakefield Dechirper for Energy Spread Reduction. Physical Review Letters, 2019, 122, 204804.	7.8	31
80	Experiments on laser driven beatwave acceleration in a ponderomotively formed plasma channel. Physics of Plasmas, 2004, 11, 2875-2881.	1.9	30
81	Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields. Physical Review Letters, 2017, 118, 244801.	7.8	30
82	Positron Injection and Acceleration on the Wake Driven by an Electron Beam in a Foil-and-Gas Plasma. Physical Review Letters, 2008, 101, 124801.	7.8	29
83	Positron Production by X Rays Emitted by Betatron Motion in a Plasma Wiggler. Physical Review Letters, 2006, 97, 175003.	7.8	28
84	Laser wakefield acceleration at reduced density in the self-guided regime. Physics of Plasmas, 2010, 17, 056709.	1.9	28
85	<i>InÂSitu</i> Generation of High-Energy Spin-Polarized Electrons in a Beam-Driven Plasma Wakefield Accelerator. Physical Review Letters, 2021, 126, 054801.	7.8	28
86	Transient Filamentation of a Laser Beam in a Thermal Force Dominated Plasma. Physical Review Letters, 1997, 78, 670-673.	7.8	26
87	Laser-ionized, beam-driven, underdense, passive thin plasma lens. Physical Review Accelerators and Beams, 2019, 22, .	1.6	26
88	Refraction of a particle beam. Nature, 2001, 411, 43-43.	27.8	24
89	Generation of microwave pulses from the static electric field of a capacitor array by an underdense, relativistic ionization front. Physics of Plasmas, 1998, 5, 2112-2119.	1.9	23
90	Observation of the Nonlinear Saturation of Langmuir Waves Driven by Ponderomotive Force in a Large Scale Plasma. Physical Review Letters, 1999, 83, 2965-2968.	7.8	23

#	Article	IF	CITATIONS
91	Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses. Nature Communications, 2020, 11, 2787.	12.8	23
92	Electrostatic Mode Coupling of Beat-Excited Electron Plasma Waves. IEEE Transactions on Plasma Science, 1987, 15, 107-130.	1.3	22
93	Studies of relativistic wave–particle interactions in plasma-based collective accelerators. Laser and Particle Beams, 1990, 8, 427-449.	1.0	22
94	Laser-Driven Plasma Accelerators Operating in the Self-Guided, Blowout Regime. IEEE Transactions on Plasma Science, 2017, 45, 3134-3146.	1.3	22
95	X-ray sources using a picosecond laser driven plasma accelerator. Physics of Plasmas, 2019, 26, .	1.9	22
96	High Efficiency Uniform Wakefield Acceleration of a Positron Beam Using Stable Asymmetric Mode in a Hollow Channel Plasma. Physical Review Letters, 2021, 127, 174801.	7.8	22
97	Ultrafast optical field–ionized gases—A laboratory platform for studying kinetic plasma instabilities. Science Advances, 2019, 5, eaax4545.	10.3	21
98	Nanoscale Electron Bunching in Laser-Triggered Ionization Injection in Plasma Accelerators. Physical Review Letters, 2016, 117, 034801.	7.8	20
99	High-field plasma acceleration in a high-ionization-potential gas. Nature Communications, 2016, 7, 11898.	12.8	18
100	Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity. Nature Communications, 2016, 7, 12483.	12.8	18
101	Measurements of the Growth and Saturation of Electron Weibel Instability in Optical-Field Ionized Plasmas. Physical Review Letters, 2020, 125, 255001.	7.8	18
102	Growth and nonlinear evolution of the modified Simon-Hoh instability in an electron beam-produced plasma. Physics of Plasmas, 2000, 7, 1774-1780.	1.9	17
103	Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	17
104	High-resolution phase-contrast imaging of biological specimens using a stable betatron X-ray source in the multiple-exposure mode. Scientific Reports, 2019, 9, 7796.	3.3	16
105	Multi-atmosphere picosecond CO ₂ amplifier optically pumped at 43  î¼m. Applied Optics, 58, 5756.	2019, 1.8	16
106	Collinear Thomson scattering diagnostic system for the detection of relativistic waves in low-density plasmas. Review of Scientific Instruments, 2003, 74, 3576-3578.	1.3	15
107	Nanocomposite of semiconducting ferroelectric antimony sulphoiodide dots-doped glasses. Ferroelectrics, 1999, 230, 11-20.	0.6	13
108	Emittance preservation through density ramp matching sections in a plasma wakefield accelerator. Physical Review Accelerators and Beams, 2020, 23, .	1.6	13

#	Article	IF	CITATIONS
109	A Plasma Wave Accelerator - Surfatron II. IEEE Transactions on Nuclear Science, 1983, 30, 3244-3246.	2.0	12
110	Measurement of forward Raman scattering and electron acceleration from high-intensity laser–plasma interactions at 527 nm. IEEE Transactions on Plasma Science, 2000, 28, 1122-1127.	1.3	12
111	Laser-driven collisionless shock acceleration of ions from near-critical plasmas. Physics of Plasmas, 2020, 27, .	1.9	12
112	Ionization induced plasma grating and its applications in strong-field ionization measurements. Plasma Physics and Controlled Fusion, 2021, 63, 095011.	2.1	12
113	Generation of ultrahigh-brightness pre-bunched beams from a plasma cathode for X-ray free-electron lasers. Nature Communications, 2022, 13, .	12.8	11
114	Efficient harmonic microbunching in a 7th-order inverse-free-electron laser interaction. Physical Review Special Topics: Accelerators and Beams, 2009, 12, .	1.8	10
115	Scaling of the longitudinal electric field and transformer ratio in a nonlinear plasma wakefield accelerator. Physical Review Special Topics: Accelerators and Beams, 2010, 13, .	1.8	10
116	Energy gain scaling with plasma length and density in the plasma wakefield accelerator. New Journal of Physics, 2010, 12, 045022.	2.9	10
117	Prospects and directions of CO2 laser-driven accelerators. AIP Conference Proceedings, 2016, , .	0.4	10
118	Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems. Physics of Plasmas, 2018, 25, 056706.	1.9	10
119	Near-Ideal Dechirper for Plasma-Based Electron and Positron Acceleration Using a Hollow Channel Plasma. Physical Review Applied, 2019, 12, .	3.8	10
120	Effect of fluctuations in the down ramp plasma source profile on the emittance and current profile of the self-injected beam in a plasma wakefield accelerator. Physical Review Accelerators and Beams, 2019, 22, .	1.6	10
121	Resonant nonlinear refraction of 4.3-νm light in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">CO <mml:mn>2</mml:mn> </mml:mi </mml:msub> </mml:mrow> gas. Physical Review A. 2019, 100.</mml:math 	2.5	9
122	Initial operation of the UCLA plane wave transformer (PWT) linac. , 0, , .		9
123	Experimental study of beat wave excitation of high phase velocity space charge waves in a plasma for particle acceleration. AIP Conference Proceedings, 1985, , .	0.4	8
124	X-ray analysis methods for sources from self-modulated laser wakefield acceleration driven by picosecond lasers. Review of Scientific Instruments, 2019, 90, 033503.	1.3	8
125	Ultra-short pulse generation from mid-IR to THz range using plasma wakes and relativistic ionization fronts. Physics of Plasmas, 2021, 28, .	1.9	8
126	Lasing in 15 atm CO2 cell optically pumped by a Fe:ZnSe laser. Optics Express, 2021, 29, 31455.	3.4	8

#	Article	IF	CITATIONS
127	Ultrabright Electron Bunch Injection in a Plasma Wakefield Driven by a Superluminal Flying Focus Electron Beam. Physical Review Letters, 2022, 128, 174803.	7.8	8
128	Photoemission from diamond and fullerene films for advanced accelerator applications. IEEE Transactions on Plasma Science, 1996, 24, 428-438.	1.3	7
129	High-brilliance synchrotron radiation induced by the plasma magnetostatic mode. Physical Review Special Topics: Accelerators and Beams, 2010, 13, .	1.8	7
130	Forward directed ion acceleration in a LWFA with ionization-induced injection. Journal of Plasma Physics, 2012, 78, 327-331.	2.1	7
131	Low-energy-spread laser wakefield acceleration using ionization injection with a tightly focused laser in a mismatched plasma channel. Plasma Physics and Controlled Fusion, 2016, 58, 034004.	2.1	7
132	The status and evolution of plasma wakefield particle accelerators. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 577-585.	3.4	6
133	CO ₂ Laser acceleration of forward directed MeV proton beams in a gas target at critical plasma density. Journal of Plasma Physics, 2012, 78, 373-382.	2.1	6
134	Plasma dynamics near critical density inferred from direct measurements of laser hole boring. Physical Review E, 2016, 93, 061202.	2.1	6
135	Colliding ionization injection in a plasma wakefield accelerator. Plasma Physics and Controlled Fusion, 2016, 58, 034015.	2.1	6
136	Plasma-based accelerators: then and now. Plasma Physics and Controlled Fusion, 2019, 61, 104001.	2.1	6
137	Initializing anisotropic electron velocity distribution functions in optical-field ionized plasmas. Plasma Physics and Controlled Fusion, 2020, 62, 024011.	2.1	6
138	Predominant contribution of direct laser acceleration to high-energy electron spectra in a low-density self-modulated laser wakefield accelerator. Physical Review Accelerators and Beams, 2021, 24, .	1.6	6
139	Control of the nonlinear response of bulk GaAs induced by long-wavelength infrared pulses. Optics Express, 2019, 27, 30462.	3.4	6
140	Motion of relativistic electrons through transverse relativistic plasma waves. Review of Scientific Instruments, 1990, 61, 3037-3039.	1.3	5
141	Studies of linear and nonlinear photoelectric emission for advanced accelerator applications. , 0, , .		5
142	A Plasma Lens for High Intensity Laser Focusing. AIP Conference Proceedings, 2006, , .	0.4	5
143	Probing thermal Weibel instability in optical-field-ionized plasmas using relativistic electron bunches. Plasma Physics and Controlled Fusion, 2020, 62, 024010.	2.1	5
144	Conservation of angular momentum in second harmonic generation from under-dense plasmas. Communications Physics, 2020, 3, .	5.3	5

#	Article	IF	CITATIONS
145	Positron beam extraction from an electron-beam-driven plasma wakefield accelerator. Physical Review Accelerators and Beams, 2019, 22, .	1.6	5
146	DEGENERATE AND RESONANT FOUR-WAVE MIXING IN PLASMAS. Journal of Nonlinear Optical Physics and Materials, 1992, 01, 1-24.	1.8	4
147	Acceleration of injected electrons by the plasma beat wave accelerator. AIP Conference Proceedings, 1992, , .	0.4	4
148	Plasma source test and simulation results for the underdense plasma lens experiment at the UCLA Neptune Laboratory. IEEE Transactions on Plasma Science, 2000, 28, 271-277.	1.3	4
149	Parametric exploration of intense positron beam–plasma interactions. Laser and Particle Beams, 2003, 21, 497-504.	1.0	4
150	Betatron radiation and emittance growth in plasma wakefield accelerators. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180173.	3.4	4
151	Gain dynamics in a CO2 active medium optically pumped at 4.3 <i>μ</i> m. Journal of Applied Physics, 2020, 128, .	2.5	4
152	Generation of Terawatt Attosecond Pulses from Relativistic Transition Radiation. Physical Review Letters, 2021, 126, 094801.	7.8	4
153	Interpretation of Resonant and Non-Resonant Beat-Wave Excitation: Experiments and Simulations. AIP Conference Proceedings, 2002, , .	0.4	3
154	Generation of high power, sub-picosecond, 10â€Âµm pulses via self-phase modulation followed by compression. AIP Conference Proceedings, 2016, , .	0.4	3
155	Observation of breakdown wave mechanism in avalanche ionization produced atmospheric plasma generated by a picosecond CO2 laser. Physics of Plasmas, 2022, 29, .	1.9	3
156	Electron Weibel instability induced magnetic fields in optical-field ionized plasmas. Physics of Plasmas, 2022, 29, .	1.9	3
157	Backward Compton scattering for probing electric fields in a plasma. Review of Scientific Instruments, 1986, 57, 1840-1842.	1.3	2
158	Detection of trapped magnetic fields in a theta pinch using a relativistic electron beam. Review of Scientific Instruments, 1988, 59, 1641-1643.	1.3	2
159	Electron acceleration in relativistic plasma waves generated by a single frequency short-pulse laser. , 0, , .		2
160	Study of X-ray Harmonics of the Polarized Inverse Compton Scattering Experiment at UCLA. AIP Conference Proceedings, 2004, , .	0.4	2
161	Production of Multi-Terawatt Time-Structured CO[sub 2] Laser Pulses for Ion Acceleration. , 2010, , .		2
162	Monoenergetic proton beams from laser driven shocks. AIP Conference Proceedings, 2013, , .	0.4	2

#	Article	IF	CITATIONS
163	Nonlinear optical compression of high-power 10-µm CO2 laser pulses in gases and semiconductors. AIP Conference Proceedings, 2017, , .	0.4	2
164	Generating Quasi-Single Multi - Terawatt Picosecond Pulses in the Neptune CO <inf>2</inf> Laser System. , 2018, , .		2
165	Resonant nonlinear refraction of 4–5â~μm light in CO and CO2 gas. Physical Review A, 2021, 104, .	2.5	2
166	Measurements of the beatwave dynamics in time and space. , 0, , .		1
167	A beam size monitor based on appearance intensities for multiple gas ionization. , 0, , .		1
168	A broadband electron spectrometer and electron detectors for laser accelerator experiments. , 0, , .		1
169	Exact forward scattering of a CO2 laser beam from a relativistic plasma wave by time resolved frequency mixing in AgGaS2. Review of Scientific Instruments, 1997, 68, 690-693.	1.3	1
170	Commissioning of the Neptune photoinjector. , 0, , .		1
171	Development of a Waveguide FEL Seeded in the 1–3 THz Range for Microbunching Experiment at the Neptune Laboratory. AIP Conference Proceedings, 2006, , .	0.4	1
172	100 MeV injector cell for a staged laser wakefield accelerator. AIP Conference Proceedings, 2013, , .	0.4	1
173	Mitigation Techniques for Witness Beam Hosing in Plasma - Based Acceleration. , 2018, , .		1
174	Tunable Plasma Linearizer for Compensation of Nonlinear Energy Chirp. Physical Review Applied, 2021, 16, .	3.8	1
175	Surfing Plasma Waves: A New Paradigm for Particle Accelerators. Plasma and Fusion Research, 2009, 4, 045-045.	0.7	1
176	Population Inversion in a Stationary Recombining Plasma The Review of Laser Engineering, 1991, 19, 508-519.	0.0	1
177	Shaping trailing beams for beam loading via beam-induced-ionization injection at FACET. Physical Review Accelerators and Beams, 2019, 22, .	1.6	1
178	Characteristics of plasmas produced by double beat wave interaction in the Neptune facility at UCLA. , 0, , .		1
179	Generation of topologically complex three-dimensional electron beams in a plasma photocathode. Physical Review Accelerators and Beams, 2022, 25, .	1.6	1
180	Highly spin-polarized multi-GeV electron beams generated by single-species plasma photocathodes. Physical Review Research, 2022, 4, .	3.6	1

CHAN JOSHI

#	Article	IF	CITATIONS
181	Degenerate Resonant Four Wave Mixing Of Laser Radiation In A Plasma. , 1990, , .		0
182	Tunable high frequency radiation source utilizing a relativistically propagating ionization front. , 0, ,		0
183	Photoelectron beams from the UCLA rf gun. AIP Conference Proceedings, 1992, , .	0.4	0
184	Theory and simulation of plasma accelerators. , 0, , .		0
185	Two-dimensional Cherenkov emission array for studies of relativistic electron dynamics in a laser plasma. Review of Scientific Instruments, 1997, 68, 358-360.	1.3	0
186	Thin film photoemission experiments. , 1997, , .		0
187	Physics of laser particle acceleration. , 1998, , .		0
188	Laser accelerators: experiments, computations and prospects. , 0, , .		0
189	The NEPTUNE facility for 2nd generation advanced accelerator experiments. , 0, , .		0
190	A two-wavelength terawatt CO/sub 2/ laser system for the plasma heat wave accelerator. , 0, , .		0
191	Cerenkov radiation from a magnetized plasma: a diagnostic for PBWA experiments. , 0, , .		0
192	Generation of 40-ps, terawatt 10-/spl mu/m pulses using self-phase modulation in plasma. , 2001, , .		0
193	Non-resonant excitation of relativistic plasma waves using a two-wavelength TW CO/sub 2/ laser pulse. , 0, , .		0
194	Study of a THz IFEL prebuncher for laser-plasma accelerators. AIP Conference Proceedings, 2004, , .	0.4	0
195	High-power terahertz radiation source based on difference frequency mixing of CO/sub 2/ laser lines. , 2005, , .		0
196	Narrow-band, intense terahertz pulses from a large-aperture GaAs frequency downconverter. , 2006, ,		0
197	STATUS OF THE POLARIZED NONLINEAR INVERSE COMPTON SCATTERING EXPERIMENT AT UCLA. International Journal of Modern Physics A, 2007, 22, 4355-4362.	1.5	0
198	THz Modulation of Relativistic Electrons Using a Vacuum Laser Beat-Wave. , 2007, , .		0

CHAN JOSHI

#	Article	IF	CITATIONS
199	Development of a THz seed source for FEL microbunching experiment at the neptune laboratory. , 2007, , .		0
200	THz modulation of relativistic electrons using a vacuum laser beat-wave. , 2007, , .		0
201	Narrow-band Terahertz pulses generated by difference-frequency mixing of CO <inf>2</inf> laser lines. , 2008, , .		0
202	Indication of Local Laser Pump Depletion via Transmitted Self-Guided Laser Light. , 2009, , .		0
203	Femtosecond Microbunching of Electron Beam in a 7[sup th] Harmonic Coupled IFEL. , 2009, , .		0
204	Differences in plasma focusing of short, relativistic electron and positron bunches. , 2009, , .		0
205	Plasma sources for future plasma wakefield accelerator based electron/positron collider. , 2009, , .		0
206	Seeded FEL Amplifier-Buncher in the 0.5â \in "9 THz for Advanced Accelerators. , 2009, , .		0
207	Seeded FEL Microbunching Experiments at the UCLA Neptune Laboratory. , 2010, , .		Ο
208	Ion acceleration in a gas jet using multi-terawatt CO[sub 2] laser pulses. , 2013, , .		0
209	Generation of coherent, broadband X-ray and mid-IR pulses in a noble-gas-filled hollow waveguide. , 2013, , .		Ο
210	Four-frame picosecond interferometry system for probing near-critical density CO2 laser-produced plasmas. AIP Conference Proceedings, 2016, , .	0.4	0
211	The energy-dependent betatron phase advance in the blowout regime–comparison of two methods for estimation. AlP Conference Proceedings, 2016, , .	0.4	Ο
212	Two-beam accelerator with active medium as the energy source. AIP Conference Proceedings, 2016, , .	0.4	0
213	Generation of energetic, picosecond seed pulses for CO2 laser using Raman shifter. AIP Conference Proceedings, 2017, , .	0.4	Ο
214	Investigating Instabilities of Long, Intense Laser Pulses in Plasma Wakefield Accelerators. , 2018, , .		0
215	Generation and Acceleration of the Trailing Positron Bunch Using a Drive- Trailing Electron Bunch Configuration. , 2018, , .		0
216	Demonstration of Degenerate Four Wave Mixing and Phase Conjugation of CO2 Laser in a Plasma The Review of Laser Engineering, 1991, 19, 451-460.	0.0	0

#	Article	IF	CITATIONS
217	The UCLA compact high brightness electron accelerator. , 0, , .		Ο
218	The optimal beam-loading in two-bunch nonlinear plasma wakefield accelerators. Plasma Physics and Controlled Fusion, 2022, 64, 065007.	2.1	0