
Jonathan C Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3204835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes and Development, 2007, 21, 2747-2761.	2.7	2,487
2	TEAD mediates YAP-dependent gene induction and growth control. Genes and Development, 2008, 22, 1962-1971.	2.7	1,943
3	Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 2015, 163, 811-828.	13.5	1,716
4	Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling. Cell, 2012, 150, 780-791.	13.5	1,310
5	A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF ^{β-TRCP} . Genes and Development, 2010, 24, 72-85.	2.7	1,100
6	The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell Biology, 2011, 13, 877-883.	4.6	1,009
7	The Hippo–YAP pathway in organ size control and tumorigenesis: an updated version. Genes and Development, 2010, 24, 862-874.	2.7	978
8	TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo Pathway. Molecular and Cellular Biology, 2008, 28, 2426-2436.	1.1	805
9	Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes and Development, 2012, 26, 54-68.	2.7	632
10	The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes and Development, 2010, 24, 1106-1118.	2.7	621
11	Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes and Development, 2011, 25, 51-63.	2.7	557
12	TEAD Transcription Factors Mediate the Function of TAZ in Cell Growth and Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 2009, 284, 13355-13362.	1.6	470
13	The Hippo–YAP pathway: new connections between regulation of organ size and cancer. Current Opinion in Cell Biology, 2008, 20, 638-646.	2.6	400
14	LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer. Cell Reports, 2015, 13, 209-221.	2.9	291
15	Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes and Development, 2017, 31, 247-259.	2.7	207
16	Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell Reports, 2018, 25, 2808-2820.e4.	2.9	201
17	The Hippo Pathway in Heart Development, Regeneration, and Diseases. Circulation Research, 2015, 116, 1431-1447.	2.0	178
18	Both TEAD-Binding and WW Domains Are Required for the Growth Stimulation and Oncogenic Transformation Activity of Yes-Associated Protein. Cancer Research, 2009, 69, 1089-1098.	0.4	175

JONATHAN C ZHAO

#	Article	IF	CITATIONS
19	Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nature Cell Biology, 2017, 19, 362-374.	4.6	153
20	Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nature Communications, 2014, 5, 3972.	5.8	147
21	Phosphorylation of Angiomotin by Lats1/2 Kinases Inhibits F-actin Binding, Cell Migration, and Angiogenesis. Journal of Biological Chemistry, 2013, 288, 34041-34051.	1.6	133
22	Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nature Communications, 2015, 6, 6239.	5.8	129
23	Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Research, 2012, 22, 322-331.	2.4	122
24	Androgen Receptor-Independent Function of FoxA1 in Prostate Cancer Metastasis. Cancer Research, 2013, 73, 3725-3736.	0.4	118
25	<scp>SLFN</scp> 11 inhibits checkpoint maintenance and homologous recombination repair. EMBO Reports, 2016, 17, 94-109.	2.0	116
26	Src Inhibits the Hippo Tumor Suppressor Pathway through Tyrosine Phosphorylation of Lats1. Cancer Research, 2017, 77, 4868-4880.	0.4	116
27	Targeting FOXA1-mediated repression of TGF-Î ² signaling suppresses castration-resistant prostate cancer progression. Journal of Clinical Investigation, 2018, 129, 569-582.	3.9	116
28	SET1A-Mediated Mono-Methylation at K342 Regulates YAP Activation by Blocking Its Nuclear Export and Promotes Tumorigenesis. Cancer Cell, 2018, 34, 103-118.e9.	7.7	114
29	The regulation and function of YAP transcription co-activator. Acta Biochimica Et Biophysica Sinica, 2015, 47, 16-28.	0.9	108
30	Hippo signaling at a glance. Journal of Cell Science, 2010, 123, 4001-4006.	1.2	107
31	Activation of MAPK Signaling by CXCR7 Leads to Enzalutamide Resistance in Prostate Cancer. Cancer Research, 2019, 79, 2580-2592.	0.4	85
32	A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Research, 2015, 25, 997-1012.	5.7	84
33	The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3K27ac for transcriptional regulation. BMC Genomics, 2016, 17, 335.	1.2	83
34	CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response. Cell Reports, 2017, 18, 2373-2386.	2.9	81
35	TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nature Communications, 2018, 9, 5007.	5.8	70
36	Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes and Development, 2016, 30, 1086-1100.	2.7	68

JONATHAN C ZHAO

#	Article	IF	CITATIONS
37	BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1. Nature Communications, 2018, 9, 500.	5.8	65
38	Delivery of miR-212 by chimeric peptide-condensed supramolecular nanoparticles enhances the sensitivity of pancreatic ductal adenocarcinoma to doxorubicin. Biomaterials, 2019, 192, 590-600.	5.7	61
39	Hippo Signaling in the Immune System. Trends in Biochemical Sciences, 2018, 43, 77-80.	3.7	60
40	Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Research, 2015, 25, 985-988.	5.7	54
41	YAP activates the Hippo pathway in a negative feedback loop. Cell Research, 2015, 25, 1175-1178.	5.7	54
42	FOXA1 potentiates lineage-specific enhancer activation through modulating TET1 expression and function. Nucleic Acids Research, 2016, 44, 8153-8164.	6.5	53
43	Smad7 enables STAT3 activation and promotes pluripotency independent of TGF-β signaling. Proceedings of the United States of America, 2017, 114, 10113-10118.	3.3	48
44	Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility. Oncogene, 2018, 37, 4964-4978.	2.6	47
45	Loss of <scp>VGLL</scp> 4 suppresses tumor <scp>PD</scp> â€L1 expression and immune evasion. EMBO Journal, 2019, 38, .	3.5	42
46	<scp>PRDM</scp> 4 mediates <scp>YAP</scp> â€induced cell invasion by activating leukocyteâ€specific integrin β2 expression. EMBO Reports, 2018, 19, .	2.0	41
47	ALK phosphorylates SMAD4 on tyrosine to disable TGF-β tumour suppressor functions. Nature Cell Biology, 2019, 21, 179-189.	4.6	41
48	A subcellular map of the human kinome. ELife, 2021, 10, .	2.8	41
49	HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nature Genetics, 2022, 54, 670-683.	9.4	39
50	Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation. Molecular and Cellular Biology, 2015, 35, 1700-1711.	1.1	37
51	Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Science Advances, 2021, 7, .	4.7	37
52	Inhibition of mTORC2 Induces Cell-Cycle Arrest and Enhances the Cytotoxicity of Doxorubicin by Suppressing MDR1 Expression in HCC Cells. Molecular Cancer Therapeutics, 2015, 14, 1805-1815.	1.9	36
53	Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) mediate cell density–dependent proinflammatory responses. Journal of Biological Chemistry, 2018, 293, 18071-18085.	1.6	34

54 Mst Out and HCC In. Cancer Cell, 2009, 16, 363-364.

7.7 28

JONATHAN C ZHAO

#	Article	IF	CITATIONS
55	Polycomb-Mediated Disruption of an Androgen Receptor Feedback Loop Drives Castration-Resistant Prostate Cancer. Cancer Research, 2017, 77, 412-422.	0.4	23
56	Altered chromatin recruitment by FOXA1 mutations promotes androgen independence and prostate cancer progression. Cell Research, 2019, 29, 773-775.	5.7	20
57	Organoids model distinct Vitamin E effects at different stages of prostate cancer evolution. Scientific Reports, 2017, 7, 16285.	1.6	19
58	FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion. Nature Communications, 2022, 13, .	5.8	19
59	Regulation and functions of the Hippo pathway in stemness and differentiation. Acta Biochimica Et Biophysica Sinica, 2020, 52, 736-748.	0.9	17
60	Loss of miR-192-5p initiates a hyperglycolysis and stemness positive feedback in hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 268.	3.5	16
61	<scp>PTPN</scp> 3 acts as a tumor suppressor and boosts <scp>TGF</scp> â€Î² signaling independent of its phosphatase activity. EMBO Journal, 2019, 38, e99945.	3.5	15
62	Liver cancer heterogeneity modeled by in situ genome editing of hepatocytes. Science Advances, 2022, 8, .	4.7	15
63	Cyclopeptide RA-V Inhibits Organ Enlargement and Tumorigenesis Induced by YAP Activation. Cancers, 2018, 10, 449.	1.7	14
64	Molecular mechanisms of the mammalian Hippo signaling pathway. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2017, 39, 546-567.	0.1	14
65	Human telomerase reverse transcriptase is a novel target of Hippo‥AP pathway. FASEB Journal, 2020, 34, 4178-4188.	0.2	11
66	Quantitative Real-Time PCR to Measure YAP/TAZ Activity in Human Cells. Methods in Molecular Biology, 2019, 1893, 137-152.	0.4	5
67	HSPA13 facilitates NF-κB–mediated transcription and attenuates cell death responses in TNFα signaling. Science Advances, 2021, 7, eabh1756.	4.7	5
68	Hippo Pathway Key to Ploidy Checkpoint. Cell, 2014, 158, 695-696.	13.5	3